Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres

Composites Science and Technology - Tập 167 - Trang 115-125 - 2018
Anil R. Ravindran1, Raj B. Ladani1, Shuying Wu1,2, Anthony J. Kinloch3, Chun H. Wang1,2, Adrian P. Mouritz1
1Sir Lawrence Wackett Aerospace Research Centre, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
2School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
3Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK

Tài liệu tham khảo

Hsieh, 2010, The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles, J. Mater. Sci., 45, 1193, 10.1007/s10853-009-4064-9 Zhang, 2010, Synergetic effect of carbon nanofibers and short carbon fibers on the mechanical and fracture properties of epoxy resin, Carbon, 48, 4289, 10.1016/j.carbon.2010.07.040 Ladani, 2016, Multi-scale toughening of fibre composites using carbon nanofibres and z-pins, Compos. Sci. Technol., 131, 98, 10.1016/j.compscitech.2016.06.005 Kinloch, 1983, Deformation and fracture behaviour of a rubber-toughened epoxy: 1. Microstructure and fracture studies, Polymer, 24, 1341, 10.1016/0032-3861(83)90070-8 Huang, 1992, Modelling of the toughening mechanisms in rubber-modified epoxy polymers - Part II A quantitative description of the microstructure-fracture property relationships, J. Mater. Sci., 27, 2763, 10.1007/BF00540703 Collyer, 1994 Blanco, 2009, Limiting mechanisms of mode I interlaminar toughening of composites reinforced with aligned carbon nanotubes, J. Compos. Mater., 43, 825, 10.1177/0021998309102398 Hsieh, 2011, The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer, J. Mater. Sci., 46, 7525, 10.1007/s10853-011-5724-0 Thostenson, 2001, Advances in the science and technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol., 61, 1899, 10.1016/S0266-3538(01)00094-X Bortz, 2011, Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system, Compos. Sci. Technol., 71, 31, 10.1016/j.compscitech.2010.09.015 Ladani, 2017, Enhancing fatigue resistance and damage characterisation in adhesively-bonded composite joints by carbon nanofibres, Compos. Sci. Technol., 149, 116, 10.1016/j.compscitech.2017.06.018 Wu, 2017, Aligning carbon nanofibres in glass-fibre/epoxy composites to improve interlaminar toughness and crack-detection capability, Compos. Sci. Technol., 152, 46, 10.1016/j.compscitech.2017.09.007 Liu, 2013, Toughening of epoxies by covalently anchoring triazole-functionalized stacked-cup carbon nanofibers, Compos. Sci. Technol., 85, 1, 10.1016/j.compscitech.2013.05.009 Ladani, 2016, Multifunctional properties of epoxy nanocomposites reinforced by aligned nanoscale carbon, Mater. Des., 94, 554, 10.1016/j.matdes.2016.01.052 Chavez-Valdez, 2013, Applications of graphene electrophoretic deposition. A review, J. Phys. Chem. B, 117, 1502, 10.1021/jp3064917 Zakaria, 2017, Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties, Compos. Part B Eng., 119, 57, 10.1016/j.compositesb.2017.03.023 Diba, 2016, Electrophoretic deposition of graphene-related materials: a review of the fundamentals, Prog. Mater. Sci., 82, 83, 10.1016/j.pmatsci.2016.03.002 Wu, 2015, Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites, Carbon, 94, 607, 10.1016/j.carbon.2015.07.026 Ravindran, 2018, The electric field alignment of short carbon fibres to enhance the toughness of epoxy composites, Compos.Part A Appl. Sci. Manuf., 106, 11, 10.1016/j.compositesa.2017.12.006 Zhou, 2017, Delamination toughening of carbon fiber/epoxy laminates by hierarchical carbon nanotube-short carbon fiber interleaves, Compos. Sci. Technol., 140, 46, 10.1016/j.compscitech.2016.12.018 Cholake, 2016, Improved Mode I fracture resistance of CFRP composites by reinforcing epoxy matrix with recycled short milled carbon fibre, Construct. Build. Mater., 111, 399, 10.1016/j.conbuildmat.2016.02.039 Mower, 1987, Fracture characterization of random short fiber reinforced thermoset resin composites, Eng. Fract. Mech., 26, 593, 10.1016/0013-7944(87)90100-7 Nikpur, 1990, Fracture toughness of unidirectional short-fiber reinforced epoxy composites, Compos. Sci. Technol., 38, 175, 10.1016/0266-3538(90)90005-P Kim, 1991, High strength, high fracture toughness fibre composites with interface control—a review, Compos. Sci. Technol., 41, 333, 10.1016/0266-3538(91)90072-W Li, 1991, A micromechanical model of tension-softening and bridging toughening of short random fiber reinforced brittle matrix composites, J. Mech. Phys. Solids, 39, 607, 10.1016/0022-5096(91)90043-N Fu, 1997, The fibre pull-out energy of misaligned short fibre composites, J. Mater. Sci., 32, 1985, 10.1023/A:1018593931951 Rodriguez, 2010, Synthesis of multiscale reinforcement fabric by electrophoretic deposition of amine-functionalized carbon nanofibers onto carbon fiber layers, Carbon, 48, 3256, 10.1016/j.carbon.2010.05.018 Wegst, 2015, Bioinspired structural materials, Nat. Mater., 14, 23, 10.1038/nmat4089 Studart, 2012, Towards high-performance bioinspired composites, Adv. Mater., 24, 5024, 10.1002/adma.201201471 Prasse, 2003, Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment, Compos. Sci. Technol., 63, 1835, 10.1016/S0266-3538(03)00019-8 Boccaccini, 2006, Electrophoretic deposition of carbon nanotubes, Carbon, 44, 3149, 10.1016/j.carbon.2006.06.021 Ma, 2015, Fracture resistance, thermal and electrical properties of epoxy composites containing aligned carbon nanotubes by low magnetic field, Compos. Sci. Technol., 114, 126, 10.1016/j.compscitech.2015.04.007 Wu, 2015, Epoxy nanocomposites containing magnetite-carbon nanofibers aligned using a weak magnetic field, Polymer, 68, 25, 10.1016/j.polymer.2015.04.080 Longana, 2016, Multiple closed loop recycling of carbon fibre composites with the HiPerDiF (High Performance Discontinuous Fibre) method, Compos. Struct., 153, 271, 10.1016/j.compstruct.2016.06.018 Ladani, 2015, Improving the toughness and electrical conductivity of epoxy nanocomposites by using aligned carbon nanofibres, Compos. Sci. Technol., 117, 146, 10.1016/j.compscitech.2015.06.006 Duan, 2004, Substrate constraint and adhesive thickness effects on fracture toughness of adhesive joints, J. Adhes. Sci. Technol., 18, 39, 10.1163/156856104322746992 ATL Composites, West System Epoxy/105resin Data http://atlcomposites.com.au/icart/products/44/images/main/WEST%20SYSTEM%20R105.pdf(accessed 17.03.2017). 2009 Hemstreet, 1985, Charge distribution on a fiber, J. Electrost., 17, 279, 10.1016/0304-3886(85)90028-2 Jackson, 2000, Charge density on thin straight wire, revisited, Am. J. Phys., 68, 789, 10.1119/1.1302908 Michael Pycraft, 2000, AC electrokinetics: applications for nanotechnology, Nanotechnology, 11, 124, 10.1088/0957-4484/11/2/314 Kim, 2004, Polymeric composites tailored by electric field, J. Mater. Res., 19, 1164, 10.1557/JMR.2004.0151 Yeo, 2017, Functionalization and dispersion of carbon nanomaterials using an environmentally friendly ultrasonicated ozonolysis process, J. Vis. Exp., 2017, 10.3791/55614 Sebaibi, 2014, Influence of the distribution and orientation of fibres in a reinforced concrete with waste fibres and powders, Construct. Build. Mater., 65, 254, 10.1016/j.conbuildmat.2014.04.134 Garg, 1988, Failure mechanisms in toughened epoxy resins—a review, Compos. Sci. Technol., 31, 179, 10.1016/0266-3538(88)90009-7 Kinloch, 2005, The effect of silica nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers, J. Mater. Sci., 40, 5083, 10.1007/s10853-005-1716-2 Norman, 2003, The effect of fiber orientation on the toughening of short fiber-reinforced polymers, J. Appl. Polym. Sci., 90, 2740, 10.1002/app.12913 Cox, 2005, Snubbing effects in the pullout of a fibrous rod from a laminate, Mech. Adv. Mater. Struct., 12, 85, 10.1080/15376490490493899 Yao, 2018, Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites, Compos. Part B Eng., 132, 170, 10.1016/j.compositesb.2017.09.012 Fu, 2002, Synergistic effect on the fracture toughness of hybrid short glass fiber and short carbon fiber reinforced polypropylene composites, Mater. Sci. Eng. A, 323, 326, 10.1016/S0921-5093(01)01383-1 Mirjalili, 2010, Modelling of the carbon nanotube bridging effect on the toughening of polymers and experimental verification, Compos. Sci. Technol., 70, 1537, 10.1016/j.compscitech.2010.05.016 Gao, 1990, Apparent fracture energy of brittle materials by branching of crack and microcrack, J. Mater. Sci. Lett., 9, 1409, 10.1007/BF00721599 SIGMA-ALDRICH, 2018 TORAYCA, 2018 Liu, 2012, Temperature effect on interfacial bonding property of single-carbon fiber/epoxy resin composite, Polym. Compos., 33, 1368, 10.1002/pc.22273 Ozkan, 2012, Interfacial strength and fracture energy of individual carbon nanofibers in epoxy matrix as a function of surface conditions, Compos. Sci. Technol., 72, 965, 10.1016/j.compscitech.2012.03.004 Kim, 1992, Interfacial debonding and fibre pull-out stresses - Part I Critical comparison of existing theories with experiments, J. Mater. Sci., 27, 3143, 10.1007/BF01116004