Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres
Tài liệu tham khảo
Hsieh, 2010, The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles, J. Mater. Sci., 45, 1193, 10.1007/s10853-009-4064-9
Zhang, 2010, Synergetic effect of carbon nanofibers and short carbon fibers on the mechanical and fracture properties of epoxy resin, Carbon, 48, 4289, 10.1016/j.carbon.2010.07.040
Ladani, 2016, Multi-scale toughening of fibre composites using carbon nanofibres and z-pins, Compos. Sci. Technol., 131, 98, 10.1016/j.compscitech.2016.06.005
Kinloch, 1983, Deformation and fracture behaviour of a rubber-toughened epoxy: 1. Microstructure and fracture studies, Polymer, 24, 1341, 10.1016/0032-3861(83)90070-8
Huang, 1992, Modelling of the toughening mechanisms in rubber-modified epoxy polymers - Part II A quantitative description of the microstructure-fracture property relationships, J. Mater. Sci., 27, 2763, 10.1007/BF00540703
Collyer, 1994
Blanco, 2009, Limiting mechanisms of mode I interlaminar toughening of composites reinforced with aligned carbon nanotubes, J. Compos. Mater., 43, 825, 10.1177/0021998309102398
Hsieh, 2011, The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer, J. Mater. Sci., 46, 7525, 10.1007/s10853-011-5724-0
Thostenson, 2001, Advances in the science and technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol., 61, 1899, 10.1016/S0266-3538(01)00094-X
Bortz, 2011, Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system, Compos. Sci. Technol., 71, 31, 10.1016/j.compscitech.2010.09.015
Ladani, 2017, Enhancing fatigue resistance and damage characterisation in adhesively-bonded composite joints by carbon nanofibres, Compos. Sci. Technol., 149, 116, 10.1016/j.compscitech.2017.06.018
Wu, 2017, Aligning carbon nanofibres in glass-fibre/epoxy composites to improve interlaminar toughness and crack-detection capability, Compos. Sci. Technol., 152, 46, 10.1016/j.compscitech.2017.09.007
Liu, 2013, Toughening of epoxies by covalently anchoring triazole-functionalized stacked-cup carbon nanofibers, Compos. Sci. Technol., 85, 1, 10.1016/j.compscitech.2013.05.009
Ladani, 2016, Multifunctional properties of epoxy nanocomposites reinforced by aligned nanoscale carbon, Mater. Des., 94, 554, 10.1016/j.matdes.2016.01.052
Chavez-Valdez, 2013, Applications of graphene electrophoretic deposition. A review, J. Phys. Chem. B, 117, 1502, 10.1021/jp3064917
Zakaria, 2017, Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties, Compos. Part B Eng., 119, 57, 10.1016/j.compositesb.2017.03.023
Diba, 2016, Electrophoretic deposition of graphene-related materials: a review of the fundamentals, Prog. Mater. Sci., 82, 83, 10.1016/j.pmatsci.2016.03.002
Wu, 2015, Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites, Carbon, 94, 607, 10.1016/j.carbon.2015.07.026
Ravindran, 2018, The electric field alignment of short carbon fibres to enhance the toughness of epoxy composites, Compos.Part A Appl. Sci. Manuf., 106, 11, 10.1016/j.compositesa.2017.12.006
Zhou, 2017, Delamination toughening of carbon fiber/epoxy laminates by hierarchical carbon nanotube-short carbon fiber interleaves, Compos. Sci. Technol., 140, 46, 10.1016/j.compscitech.2016.12.018
Cholake, 2016, Improved Mode I fracture resistance of CFRP composites by reinforcing epoxy matrix with recycled short milled carbon fibre, Construct. Build. Mater., 111, 399, 10.1016/j.conbuildmat.2016.02.039
Mower, 1987, Fracture characterization of random short fiber reinforced thermoset resin composites, Eng. Fract. Mech., 26, 593, 10.1016/0013-7944(87)90100-7
Nikpur, 1990, Fracture toughness of unidirectional short-fiber reinforced epoxy composites, Compos. Sci. Technol., 38, 175, 10.1016/0266-3538(90)90005-P
Kim, 1991, High strength, high fracture toughness fibre composites with interface control—a review, Compos. Sci. Technol., 41, 333, 10.1016/0266-3538(91)90072-W
Li, 1991, A micromechanical model of tension-softening and bridging toughening of short random fiber reinforced brittle matrix composites, J. Mech. Phys. Solids, 39, 607, 10.1016/0022-5096(91)90043-N
Fu, 1997, The fibre pull-out energy of misaligned short fibre composites, J. Mater. Sci., 32, 1985, 10.1023/A:1018593931951
Rodriguez, 2010, Synthesis of multiscale reinforcement fabric by electrophoretic deposition of amine-functionalized carbon nanofibers onto carbon fiber layers, Carbon, 48, 3256, 10.1016/j.carbon.2010.05.018
Wegst, 2015, Bioinspired structural materials, Nat. Mater., 14, 23, 10.1038/nmat4089
Studart, 2012, Towards high-performance bioinspired composites, Adv. Mater., 24, 5024, 10.1002/adma.201201471
Prasse, 2003, Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment, Compos. Sci. Technol., 63, 1835, 10.1016/S0266-3538(03)00019-8
Boccaccini, 2006, Electrophoretic deposition of carbon nanotubes, Carbon, 44, 3149, 10.1016/j.carbon.2006.06.021
Ma, 2015, Fracture resistance, thermal and electrical properties of epoxy composites containing aligned carbon nanotubes by low magnetic field, Compos. Sci. Technol., 114, 126, 10.1016/j.compscitech.2015.04.007
Wu, 2015, Epoxy nanocomposites containing magnetite-carbon nanofibers aligned using a weak magnetic field, Polymer, 68, 25, 10.1016/j.polymer.2015.04.080
Longana, 2016, Multiple closed loop recycling of carbon fibre composites with the HiPerDiF (High Performance Discontinuous Fibre) method, Compos. Struct., 153, 271, 10.1016/j.compstruct.2016.06.018
Ladani, 2015, Improving the toughness and electrical conductivity of epoxy nanocomposites by using aligned carbon nanofibres, Compos. Sci. Technol., 117, 146, 10.1016/j.compscitech.2015.06.006
Duan, 2004, Substrate constraint and adhesive thickness effects on fracture toughness of adhesive joints, J. Adhes. Sci. Technol., 18, 39, 10.1163/156856104322746992
ATL Composites, West System Epoxy/105resin Data http://atlcomposites.com.au/icart/products/44/images/main/WEST%20SYSTEM%20R105.pdf(accessed 17.03.2017).
2009
Hemstreet, 1985, Charge distribution on a fiber, J. Electrost., 17, 279, 10.1016/0304-3886(85)90028-2
Jackson, 2000, Charge density on thin straight wire, revisited, Am. J. Phys., 68, 789, 10.1119/1.1302908
Michael Pycraft, 2000, AC electrokinetics: applications for nanotechnology, Nanotechnology, 11, 124, 10.1088/0957-4484/11/2/314
Kim, 2004, Polymeric composites tailored by electric field, J. Mater. Res., 19, 1164, 10.1557/JMR.2004.0151
Yeo, 2017, Functionalization and dispersion of carbon nanomaterials using an environmentally friendly ultrasonicated ozonolysis process, J. Vis. Exp., 2017, 10.3791/55614
Sebaibi, 2014, Influence of the distribution and orientation of fibres in a reinforced concrete with waste fibres and powders, Construct. Build. Mater., 65, 254, 10.1016/j.conbuildmat.2014.04.134
Garg, 1988, Failure mechanisms in toughened epoxy resins—a review, Compos. Sci. Technol., 31, 179, 10.1016/0266-3538(88)90009-7
Kinloch, 2005, The effect of silica nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers, J. Mater. Sci., 40, 5083, 10.1007/s10853-005-1716-2
Norman, 2003, The effect of fiber orientation on the toughening of short fiber-reinforced polymers, J. Appl. Polym. Sci., 90, 2740, 10.1002/app.12913
Cox, 2005, Snubbing effects in the pullout of a fibrous rod from a laminate, Mech. Adv. Mater. Struct., 12, 85, 10.1080/15376490490493899
Yao, 2018, Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites, Compos. Part B Eng., 132, 170, 10.1016/j.compositesb.2017.09.012
Fu, 2002, Synergistic effect on the fracture toughness of hybrid short glass fiber and short carbon fiber reinforced polypropylene composites, Mater. Sci. Eng. A, 323, 326, 10.1016/S0921-5093(01)01383-1
Mirjalili, 2010, Modelling of the carbon nanotube bridging effect on the toughening of polymers and experimental verification, Compos. Sci. Technol., 70, 1537, 10.1016/j.compscitech.2010.05.016
Gao, 1990, Apparent fracture energy of brittle materials by branching of crack and microcrack, J. Mater. Sci. Lett., 9, 1409, 10.1007/BF00721599
SIGMA-ALDRICH, 2018
TORAYCA, 2018
Liu, 2012, Temperature effect on interfacial bonding property of single-carbon fiber/epoxy resin composite, Polym. Compos., 33, 1368, 10.1002/pc.22273
Ozkan, 2012, Interfacial strength and fracture energy of individual carbon nanofibers in epoxy matrix as a function of surface conditions, Compos. Sci. Technol., 72, 965, 10.1016/j.compscitech.2012.03.004
Kim, 1992, Interfacial debonding and fibre pull-out stresses - Part I Critical comparison of existing theories with experiments, J. Mater. Sci., 27, 3143, 10.1007/BF01116004