Multi-scale spatial context-based semantic edge detection
Tài liệu tham khảo
S. Ramalingam, S. Bouaziz, P. Sturm, M. Brand, SKYLINE2GPS: Localization in urban canyons using omni-skylines, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, pp. 3816–3823.
C.L. Zitnick, P. Dollar, Edge Boxes: Locating object proposals from edges, in: European Conference on Computer Vision, 2014, pp. 391–405.
G. Bertasius, J. Shi, L. Torresani, High-for-low and low-for-high: Efficient boundary detection from deep object features and its applications to high-level vision, in: IEEE International Conference on Computer Vision, 2015, pp. 504–512.
J. Yang, B. Price, S. Cohen, H. Lee, M.H. Yang, Object contour detection with a fully convolutional encoder-decoder network, in: IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 193–202.
D. Hoiem, A.A. Efros, M. Hebert, Geometric context from a single image, in: IEEE International Conference on Computer Vision, 2005, pp. 654–66.
Amer, 2015, Monocular extraction of 2.1D sketch using constrained convex optimization, Int. J. Comput. Vis., 112, 23, 10.1007/s11263-014-0752-2
Wu, 2019
Malik, 1989, Recovering three-dimensional shape from a single image of curved objects, IEEE Trans. Pattern Anal. Mach. Intell., 11, 555, 10.1109/34.24791
Q. Shan, B. Curless, Y. Furukawa, C. Hernandez, S.M. Seitz, Occluding contours for multi-view stereo, in: IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 4002–4009.
Kittler, 1983, On the accuracy of the Sobel edge detector, Image Vis. Comput., 1, 37, 10.1016/0262-8856(83)90006-9
Canny, 1986, A computation approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell., 6, 679, 10.1109/TPAMI.1986.4767851
Martin, 2004, Learning to detect natural image boundaries using local brightness, color, and texture cues, IEEE Trans. Pattern Anal. Mach. Intell., 26, 530, 10.1109/TPAMI.2004.1273918
Pablo, 2011, Contour detection and hierarchical image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 33, 898, 10.1109/TPAMI.2010.161
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Y. Fu, A.C. Berg, SSD: Single shot multibox detector, in: European Conference on Computer Vision, 2016, pp. 21–37.
T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in: IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 936–944.
J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.
C. Yu, J. Wang, P. Chao, C. Gao, S. Nong, Learning a discriminative feature network for semantic segmentation, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1857–1866.
L. Shu, Q. Lu, H. Qin, J. Shi, J. Jia, Path aggregation network for instance segmentation, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8759–8768.
A. Newell, K. Yang, D. Jia, Stacked hourglass networks for human pose estimation, in: European Conference on Computer Vision, 2016, pp. 483–499.
Z. Yu, C. Feng, M.Y. Liu, S. Ramalingam, CASENet: Deep category-aware semantic edge detection, in: IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1761–1770.
Z. Yu, W. Liu, Z. Yang, F. Chen, J. Kautz, Simultaneous edge alignment and learning, in: European Conference on Computer Vision, 2018, pp. 400–417.
Liu, 2018
Wang, 2019, An accurate and efficient multi-category edge detection method, Cogn. Syst. Res., 58, 160, 10.1016/j.cogsys.2019.06.002
Y. Hu, Y. Chen, X. Li, J. Feng, Dynamic feature fusion for semantic edge detection, in: International Joint Conference on Artificial Intelligence, 2019, pp. 782–788.
D. Acuna, A. Kar, S. Fidler, Devil is in the edges: Learning semantic boundaries from noisy annotations, in: IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 11067–11075.
B. Hariharan, P. Arbelaez, L.D. Bourdev, S. Maji, J. Malik, Semantic contours from inverse detectors, in: International Conference on Computer Vision, 2011, pp. 991–998.
Xie, 2015, Holistically-nested edge detection, Int. J. Comput. Vis., 125, 3
Liu, 2019, Richer convolutional features for edge detection, IEEE Trans. Pattern Anal. Mach. Intell., 41, 1939, 10.1109/TPAMI.2018.2878849
O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional networks for biomedical image segmentation, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015, pp. 234–24.
L. Chang, K. Wei, Q. Fei, Q. Ye, Linear span network for object skeleton detection, in: European Conference on Computer Vision, 2018, pp. 136–151.
Feynman, 1964, 45
Piotr, 2015, Fast edge detection using structured forests, IEEE Trans. Pattern Anal. Mach. Intell., 37, 1558, 10.1109/TPAMI.2014.2377715
X. Ren, L. Bo, Discriminatively trained sparse code gradients for contour detection, in: International Conference on Neural Information Processing Systems, 2012, pp. 584–592.
A. Khoreva, R. Benenson, M. Omran, M. Hein, B. Schiele, Weakly supervised object boundaries, in: IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 183–192.
Maninis, 2018, Convolutional oriented boundaries: From image segmentation to high-level tasks, IEEE Trans. Pattern Anal. Mach. Intell., 40, 819, 10.1109/TPAMI.2017.2700300
Y. Ganin, V. Lempitsky, N4-fields: Neural network nearest neighbor fields for image transforms, in: Asian Conference on Computer Vision, 2014, pp. 536–551.
G. Bertasius, J. Shi, L. Torresani, DeepEdge: A multi-scale bifurcated deep network for top-down contour detection, in: IEEE Conference on Computer Vision and Pattern Recognitionn, 2015, pp. 4380–4389.
I. Kokkinos, Pushing the boundaries of boundary detection using deep learning, in: International Conference on Learning Representations, 2015.
K.K. Maninis, J. Pont-Tuset, P. Arbeláez, L.V. Gool, Convolutional oriented boundaries, in: European Conference on Computer Vision, 2016, pp. 580–596.
J. He, S. Zhang, M. Yang, Y. Shan, T. Huang, Bi-directional cascade network for perceptual edge detection, in: IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3828–3837.
S. Wei, X. Wang, W. Yan, B. Xiang, Z. Zhang, DeepContour: A deep convolutional feature learned by positive-sharing loss for contour detection, in: IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3982–3991.
F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, in: International Conference on Learning Representations, 2016, pp. 1–13.
Andrade-Loarca, 2019
M. Zhen, J. Wang, L. Zhou, S. Li, T. Shen, J. Shang, T. Fang, L. Quan, Joint semantic segmentation and boundary detection using iterative pyramid contexts, in: IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 13666–13674.
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
L.C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L. Yuille, Semantic image segmentation with deep convolutional nets and fully connected CRFs, in: International Conference on Learning Representations, 2015, pp. 1–14.
Chen, 2018, DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs, IEEE Trans. Pattern Anal. Mach. Intell., 40, 834, 10.1109/TPAMI.2017.2699184
Chen, 2017
L.C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-decoder with atrous separable convolution for semantic image segmentation, in: European Conference on Computer Vision, 2018, pp. 833–851.
Cordts, 2016
Jia, 2014
T.Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C.L. Zitnick, P. Dollár, Microsoft COCO: Common objects in context, in: European Conference on Computer Vision, 2014, pp. 740–755.
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: a large-scale hierarchical image database, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255.
Papandreou, 2006, Multigrid geometric active contour models, IEEE Trans. Image Process., 16, 229, 10.1109/TIP.2006.884952
Henson, 2011, 137