Multi-scale simulation of wave propagation and liquefaction in a one-dimensional soil column: hybrid DEM and finite-difference procedure

Matthew R. Kuhn1
1Br. Godfrey Vassallo Prof. of Engrg., Donald P. Shiley School of Engrg., University of Portland, Portland, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agnolin I, Roux JN (2007) Internal states of model isotropic granular packings. III. Elastic properties. Phys Rev E 76:061304. https://doi.org/10.1103/PhysRevE.76.061304

Al-Jibury FK (1960) Saturated water permeability of soils as related to air permeability at different moisture tension. Oregon State University, Corvallis

Arulmoli K (1994) VELACS: selection, distribution and laboratory testing of soils. In: Arulanandan K, Scott RF (eds) Verifications of numerical procedures for the analysis of soil liquefaction problems, vol 2. Balkema, Rotterdam, pp 1281–1292

Arulmoli K, Muraleetharan KK, Hossain MM, Fruth LS (1992) VELACS verification of liquefaction analyses by centrifuge studies laboratory testing program soil data report. Tech. Rep. Project No. 90-0562, The Earth Technology Corporation, Irvine, CA. Data available through http://yees.usc.edu/velacs

Bagi K (1996) Stress and strain in granular assemblies. Mech Mater 22(3):165–177. https://doi.org/10.1016/0167-6636(95)00044-5

Bardet JP (1994) Numerical simulations of the incremental responses of idealized granular materials. Int J Solids Struct 10(8):879–908. https://doi.org/10.1016/0749-6419(94)90019-1

Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4):1482–1498. https://doi.org/10.1063/1.1728759

Biot MA, Willis DG (1957) The elastic coefficients of the theory of consolidation. J Appl Mech 15:594–601

Bouckovalas GD, Tsiapas YZ, Zontanou VA, Kalogeraki CG (2017) Equivalent linear computation of response spectra for liquefiable sites: the spectral envelope method. J Geotech Geoenviron Eng 143(4):04016115. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001625

Bray JD, Boulanger RW, Cubrinovski M, Tokimatsu K, Kramer SL, O’Rourke T, Rathje E, Green RA, Robertson PK, Beyzaei CZ (2017) Liquefaction-induced ground movement effects: U.S.—new zealand-japan international workshop. PEER Repor 2017/02, Pacific Earthquake Engineering Research Center, University of California, Berkeley

Butterfield R (2000) Scale-modelling of fluid flow in geotechnical centrifuges. Soils Found 40(6):39–45. https://doi.org/10.3208/sandf.40.6_39

Center for Engineering Strong Motion Data: Strong-Motion Virtual Data Center (VDC) (2021). https://www.strongmotioncenter.org/vdc/scripts/default.plx

Center for Geotechnical Modeling: University of California, Davis (2021). https://cgm.engr.ucdavis.edu/about/

Chakrabortty P, Popescu R (2012) Numerical simulation of centrifuge tests on homogeneous and heterogeneous soil models. Comput Geotech 41:95–105. https://doi.org/10.1016/j.compgeo.2011.11.008

Cho GC, Dodds J, Santamarina JC (2006) Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J Geotech Geoenviron Eng 132(5):591–602. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:11(1474)

Cleary PW, Sinnott M, Morrison R (2006) Prediction of slurry transport in SAG mills using SPH fluid flow in a dynamic dem based porous media. Miner Eng 19(15):1517–1527. https://doi.org/10.1016/j.mineng.2006.08.018

Cundall PA (1988) Computer simulations of dense sphere assemblies. In: Satake M, Jenkins J (eds) Micromechanics of granular materials. Elsevier, Amsterdam, pp 113–123

da Cruz F, Emam S, Prochnow M, Roux JN, Chevoir F (2005) Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys Rev E 72(2):021309. https://doi.org/10.1103/PhysRevE.72.021309

Deierlein GG, Zsaróczay A (2021) State of the art in computational simulation for natural hazards engineering. Report 2021-01, NHERI Center for Computational Modeling and Simulation, 2nd edn. https://doi.org/10.5281/zenodo.2579581

El Shamy U, Abdelhamid Y (2014) Modeling granular soils liquefaction using coupled lattice Boltzmann method and discrete element method. Soil Dyn Earthq Eng 67:119–132. https://doi.org/10.1016/j.soildyn.2014.09.004

El Shamy U, Zeghal M (2005) Coupled continuum-discrete model for saturated granular soils. J Eng Mech 131(4):413–426. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:4(413)

El Shamy U, Zeghal M (2007) A micro-mechanical investigation of the dynamic response and liquefaction of saturated granular soils. Soil Dyn Earthq Eng 27(8):712–729. https://doi.org/10.1016/j.soildyn.2006.12.010

Elgamal A, Yang Z, Lai T, Kutter BL, Wilson DW (2005) Dynamic response of saturated dense sand in laminated centrifuge container. J Geotech Geoenviron Eng 131(5):598–609. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:5(598)

Elgamal AW, Zeghal M, Tang HT, Stepp JC (1995) Lotung downhole array. I: evaluation of site dynamic properties. J Geotech Eng 121(4):350–362. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:4(350)

Faybishenko BA (1995) Hydraulic behavior of quasi-saturated soils in the presence of entrapped air: laboratory experiments. Water Resour Res 31(10):2421–2435. https://doi.org/10.1029/95WR01654

Fredlund DG (1976) Density and compressibility characteristics of air-water mixtures. Can Geotech J 13(4):386–396. https://doi.org/10.1139/t76-040

Fredlund DG (2006) Unsaturated soil mechanics in engineering practice. J Geotech Geoenviron Eng 132(3):286–321. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:3(286)

Goddard JD (1990) Nonlinear elasticity and pressure-dependent wave speeds in granular media. Proc R Soc Lond A 430:105–131. https://doi.org/10.1098/rspa.1990.0083

Goodarzi M, Kwok CY, Tham LG (2015) A continuum-discrete model using Darcy’s law: formulation and verification. Int J Numer Anal Methods Geomech 39(3):327–342. https://doi.org/10.1002/nag.2319

Guo N, Zhao J (2014) A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media. Int J Numer Methods Eng 99(11):789–818. https://doi.org/10.1002/nme.4702

Hashash YMA, Dashti S, Romero MI, Ghayoomi M, Musgrove M (2015) Evaluation of 1-D seismic site response modeling of sand using centrifuge experiments. Soil Dyn Earthq Eng 78:19–31. https://doi.org/10.1016/j.soildyn.2015.07.003

Holzer TL, Hanks TC, Youd TL (1989) Dynamics of liquefaction during the 1987 Superstition Hills, California, earthquake. Science 244(4900):56–59. https://doi.org/10.1126/science.244.4900.56

Idriss IM, Boulanger RW (2006) Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dyn Earthq Eng 26(2):115–130. https://doi.org/10.1016/j.soildyn.2004.11.023

Jäger J (2005) New solutions in contact mechanics. WIT Press, Southampton

Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 441(7094):727–730

Kloss C, Goniva C, Hager A, Amberger S, Pirker S (2012) Models, algorithms and validation for opensource dem and CFD-DEM. Prog Comput Fluid Dyn 12(2/3):140–152

Kokusho T (2000) Correlation of pore-pressure B-value with P-wave velocity and Poisson’s ratio for imperfectly saturated sand or gravel. Soils Found 40(4):95–102. https://doi.org/10.3208/sandf.40.4_95

Kramer S (2010) Evolutionary intensity measures for more accurate and informative liquefaction hazard evaluation. Tech. Rep. NEES-2010-0957, NHERI DesignSafe Data Depot. https://www.designsafe-ci.org/data/browser/public/nees.public/NEES-2010-0957.groups

Kramer SL, Sideras SS, Greenfield MW (2016) The timing of liquefaction and its utility in liquefaction hazard evaluation. Soil Dyn Earthq Eng 91:133–146

Ku T, Subramanian S, Moon SW, Jung J (2017) Stress dependency of shear-wave velocity measurements in soils. J Geotech Geoenviron Eng 143(2):04016092

Kuhn MR (2005) Are granular materials simple? An experimental study of strain gradient effects and localization. Mech Mater 37(5):607–627. https://doi.org/10.1016/j.mechmat.2004.05.001

Kuhn MR (2011) Implementation of the Jäger contact model for discrete element simulations. Int J Numer Methods Eng 88(1):66–82. https://doi.org/10.1002/nme.3166

Kuhn MR (2021) DEMPLA and OVAL: programs for analyzing particle assemblies and for simulating wave propagation and liquefaction with the discrete element method. https://github.com/mrkuhn53/dempla

Kuhn MR, Daouadji A (2018) Multi-diirectional behavior of granular materials and its relation to incremental elastoplasticity. Int J Solids Struct 152–153:305–323. https://doi.org/10.1016/j.ijsolstr.2018.07.005

Kuhn MR, Daouadji A (2018) Quasi-static incremental behavior of granular materials: elastic-plastic coupling and micro-scale dissipation. J Mech Phys Solids 114:219–237. https://doi.org/10.1016/j.jmps.2018.02.019

Kuhn MR, Daouadji A (2020) Simulation of undrained quasi-saturated soil with pore pressure measurements using a discrete element (DEM) algorithm. Soils Found 60(5):1097–1111. https://doi.org/10.1016/j.sandf.2020.05.013

Kuhn MR, Renken H, Mixsell A, Kramer S (2014) Investigation of cyclic liquefaction with discrete element simulations. J Geotech Geoenviron Eng 140(12):04014075. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001181

Kutter BL, Chen YR, Shen CK (1994) Triaxial and torsional shear test results for sand. Tech. Rep. CR 94.003, Office of Naval Research, Arlington, VA

Kwan WS (2015) Laboratory investigation into evaluation of sand liquefaction under transient loadings. Dissertation, University of Texas at Austin

Lim KW, Andrade JE (2014) Granular element method for three-dimensional discrete element calculations. Int J Numer Anal Methods Geomech 38(2):167–188. https://doi.org/10.1016/j.cma.2012.06.012

Lin X, Ng TT (1997) A three-dimensional discrete element model using arrays of ellipsoids. Géotechnique 47(2):319–329. https://doi.org/10.1680/geot.1997.47.2.319

Lloret A, Alonso EE (1980) Consolidation of unsaturated soils including swelling and collapse behaviour. Géotechnique 30(4):449–477. https://doi.org/10.1680/geot.1980.30.4.449

Maharjan M, Takahashi A (2013) Centrifuge model tests on liquefaction-induced settlement and pore water migration in non-homogeneous soil deposits. Soil Dyn Earthq Eng 55:161–169. https://doi.org/10.1016/j.soildyn.2013.09.002

Manzari MT, El Ghoraiby M, Kutter BL, Zeghal M, Abdoun T, Arduino P, Armstrong RJ, Beaty M, Carey T, Chen Y et al (2018) Liquefaction experiment and analysis projects (LEAP): summary of observations from the planning phase. Soil Dyn Earthq Eng 113:714–743. https://doi.org/10.1016/j.soildyn.2017.05.015

McManus KJ, Davis RO (1997) Dilation-induced pore fluid cavitation in sands. Géotechnique 47(1):173–177. https://doi.org/10.1680/geot.1997.47.1.173

Mindlin RD (1949) Compliance of elastic bodies in contact. J. Appl. Mech. 16:259–268

Ng TT (2006) Input parameters of discrete element methods. J Eng Mech 132(7):723–729. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:7(723)

Ordóñez GA (2000) SHAKE2000: A computer program for the 1D analysis of geotechnical earthquake engineering problems. Geomotions, LLC, USA, Lacey, WA, USA

O’Sullivan C, Bray JD (2004) Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme. Eng Comput 21(2/3/4):278–303. https://doi.org/10.1108/02644400410519794

Otsubo M, O’Sullivan C, Hanley KJ, Sim WW (2017) The influence of particle surface roughness on elastic stiffness and dynamic response. Géotechnique 67(5):452–459. https://doi.org/10.1680/jgeot.16.P.050

Rahman M.M, Baki MAL, Lo SR (2014) Prediction of undrained monotonic and cyclic liquefaction behavior of sand with fines based on the equivalent granular state parameter. Int J Geomech 14(2):254–266. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000316

Schnabel PB, Lysmer J, Seed HB (1972) SHAKE: a computer program for earthquake response of horizontally layered sites. Tech. Rep. Report EERC-72/12, Earthquake Engineering Research Center, University of California Berkeley

Sharp MK (1999) Development of centrifuge based prediction charts for liquefaction and lateral spreading from cone penetration testing. Ph.D. Thesis, Rensselaer Polytechnic Institute, Trou, N.Y

Sharp MK, Dobry R (2002) Sliding block analysis of lateral spreading based on centrifuge results. Int J Phys Model Geotech 2(2):13–32. https://doi.org/10.1680/ijpmg.2002.020202

Sharp MK, Dobry R, Abdoun T (2003) Liquefaction centrifuge modeling of sands of different permeability. J Geotech Geoenviron Eng 129(12):1083–1091. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:12(1083)

Shimizu Y (2004) Fluid coupling in PFC2D and PFC3D. In: Shimizu Y, Hart R, Cundall P (eds.) Numerical modeling in micromechanics via particle methods. In: Proceedings of the 2nd international PFC symposium, Kyoto, Japan, pp. 281–287. AA Balkema Leiden, Netherlands

Sideras SS (2019) Evolutionary instensity measures for more accurate and informative evaluation of liquefaction triggering. Dissertation, University of Washington, Seattle, Wash

Sitharam T, Vinod J (2008) Numerical simulation of liquefaction and pore pressure generation in granular materials using DEM. Int J Geotech Eng 2(2):103–113

Stevens DK, Kim BI, Wilson DW, Kutter BL (1999) Comprehensive investigation of nonlinear site response–centrifuge data report for DKS02. Tech. Rep. Data Report UCD/CGMDR-99/02, Center for Geotechnical Modeling, Univ. of Cal., Davis

Stevens DK, Kim BI, Wilson DW, Kutter BL (2001) Comprehensive investigation of nonlinear site response–centrifuge data report for DKS04. Tech. Rep. Data Report UCD/CGMDR-01/03, Center for Geotechnical Modeling, Univ. of Cal., Davis

Suzuki K, Kuhn MR (2014) Uniqueness of discrete element simulations in monotonic biaxial shear tests. Int J Geomech 14(5):06014010. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000365

Taboada-Urtuzuástegui (1995) Centrifuge modeling of earthquake-induced lateral spreading in sand using a laminar box. Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, N.Y

Taboada-Urtuzuástegui VM, Dobry R (1998) Centrifuge modeling of earthquake-induced lateral spreading in sand. J Geotech Geoenviron Eng 124(12):1195–1206. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1195)

Terzaghi K (1943) Theoretical soil mechanics. Wiley, New York

Thevanayagam S, Kanagalingam T, Reinhorn A, Tharmendhira R, Dobry R, Pitman M, Abdoun T, Elgamal A, Zeghal M, Ecemis N et al (2009) Laminar box system for 1-g physical modeling of liquefaction and lateral spreading. Geotech Test J 32(5):438–449. https://doi.org/10.1520/GTJ102154

Thornton C (2000) Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1):43–53. https://doi.org/10.1680/geot.2000.50.1.43

Tripathi A, Khakhar DV (2011) Rheology of binary granular mixtures in the dense flow regime. Phys Fluids 23(11):113302. https://doi.org/10.1063/1.3653276

Tsuji Y, Kawaguchi T, Tanaka T (1993) Discrete particle simulation of two-dimensional fluidized bed. Powder Technol 77(1):79–87. https://doi.org/10.1016/0032-5910(93)85010-7

Xia H, Hu T (1991) Effects of saturation and back pressure on sand liquefaction. J Geotech Eng 117(9):1347–1362. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1347)

Yong J (2002) Liquefaction resistance of sand in relation to P-wave velocity. Géotechnique 52(4):295–298. https://doi.org/10.1680/geot.2002.52.4.295

Zhao S, Zhao J, Liang W (2021) A thread-block-wise computational framework for large-scale hierarchical continuum-discrete modeling of granular media. Int J Numer Methods Eng 122(2):579–608. https://doi.org/10.1002/nme.6549

Zienkiewicz OC, Bettess P (1982) Soils and other saturated porous media under transient, dynamic conditions. general formulation and the validity of various simplifying assumptions. In: Pande GN, Zienkiewicz OC (eds) Soil mechanics—transient and cyclic loads. Wiley, Chichester, pp 1–16