Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đặc trưng cơ học đa quy mô của giao diện trong bê tông in 3D
Tóm tắt
Để có thể in được, mực ximăng phải có những tính chất mâu thuẫn. Nó phải đủ lỏng ở giai đoạn đầu để có thể bơm và đùn ra, đồng thời cũng phải đông cứng nhanh sau khi được đặt để có thể xây dựng. Điều này có thể ảnh hưởng đến vùng giữa các lớp, cùng với các thông số in khác. Do đó, mục đích chính của nghiên cứu này là so sánh các giao thức thử nghiệm cho phép xác định đặc trưng cơ học và đánh giá sự sụt giảm độ bám dính. Các thử nghiệm vi băng cổ điển được thực hiện vuông góc với bề mặt tiếp xúc. Hơn nữa, một phương pháp mới để chế tạo mẫu ở quy mô phòng thí nghiệm được đề xuất trong nghiên cứu này cho phép thử nghiệm nén đa phương. Sau đó, các phép đo indent tại giao diện ở quy mô vĩ mô cũng được thực hiện. Kết quả xác thực quy trình thử nghiệm mới. Các profile indent cho thấy sự yếu kém và sự mở rộng của giao diện theo thời gian. Các thử nghiệm nén đa phương cho thấy tính dị hướng trong khi không phát hiện thấy ảnh hưởng của khoảng thời gian. Indentation macro công cụ cho thấy độ bám dính giảm theo thời gian giữa các lớp.
Từ khóa
#bê tông in 3D #đặc trưng cơ học #giao diện #nén đa phương #độ bám dínhTài liệu tham khảo
Van Der Putten J, De Schutter G, Van Tittelboom K (2018) The effect of print parameters on the (micro) structure of 3D printed cementitious materials. RILEM Bookseries 19:234–244. https://doi.org/10.1007/978-3-319-99519-9_22
Malaeb Z, Alsakka F, Hamzeh F (2019) 3D concrete printing: machine design mix proportioning and mix comparison between different machine setups. In: 3D concrete printing technology, p 115-136. https://doi.org/10.1016/B978-0-12-815481-6.00006-3
Carlton HD, Haboub A, Gallegos GF, Parkinson DY, MacDowell AA (2016) Damage evolution and failure mechanisms in additively manufactured stainless steel. Mater Sci Eng A 651:406–414. https://doi.org/10.1016/j.msea.2015.10.073
Keita E, Bessaies-Bey H, Zuo W, Belin P, Roussel N (2019) Weak bond strength between successive layers in extrusion-based additive manufacturing: measurement and physical origin. Cem. Concr. Res. 123:105787. https://doi.org/10.1016/j.cemconres.2019.105787
Zareiyan B, Khoshnevis B (2017) Interlayer adhesion and strength of structures in contour crafting-effects of aggregate size, extrusion rate, and layer thickness. Autom Constr 81:112–121. https://doi.org/10.1016/j.autcon.2017.06.013
Tay YWD, Ting GHA, Qian Y, Panda B, He L, Tan MJ (2019) Time gap effect on bond strength of 3D-printed concrete. Virtual Phys Prototyp 14:104–113. https://doi.org/10.1080/17452759.2018.1500420
Panda B, Paul SC, Tan MJ (2017) Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Mater Lett 209:146–149. https://doi.org/10.1016/j.matlet.2017.07.123
Geng Z, She W, Zuo W, Lyu K, Pan H, Zhang Y, Miao C (2020) Layer-interface properties in 3D printed concrete: dual hierarchical structure and micromechanical characterization. Cem. Concr. Res. 138:106220. https://doi.org/10.1016/j.cemconres.2020.106220
Weng Y, Li M, Zhang D, Tan MJ, Qian S (2021) Investigation of interlayer adhesion of 3D printable cementitious material from the aspect of printing process. Cem. Concr. Res. 143:106386. https://doi.org/10.1016/j.cemconres.2021.106386
Le TT, Austin SA, Lim S, Buswell RA, Gibb AGF, Thorpe T (2012) Mix design and fresh properties for high-performance printing concrete. Mater Struct 45:1221–1232. https://doi.org/10.1617/s11527-012-9828-z
Nerella VN, Hempel S, Mechtcherine V (2017) Micro-and macroscopic investigations on the interface between layers of 3D-printed cementitious elements. Proc ICACMS 3:8
Paul SC, van Zijl GP, Tan MJ, Gibson I (2018) A review of 3D concrete printing systems and materials properties: current status and future research prospects. Rapid Prototyp J 24:784–798. https://doi.org/10.1108/rpj-09-2016-0154
Kruger J, van Zijl G (2020) A compendious review on lack-of-fusion in digital concrete fabrication. Addit Manuf 37:101654. https://doi.org/10.1016/j.addma.2020.101654
Wolfs RJM, Bos FP, Salet TAM (2019) Hardened properties of 3D printed concrete: the influence of process parameters on interlayer adhesion. Cem Concr Res 119:132–140. https://doi.org/10.1016/j.cemconres.2019.02.017
Zareiyan B, Khoshnevis B (2017) Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Autom Constr 83:212–221. https://doi.org/10.1016/j.autcon.2017.08.019
Nerella VN, Hempel S, Mechtcherine V (2019) Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing. Constr Build Mater 205:586–601. https://doi.org/10.1016/j.conbuildmat.2019.01.235
Sanjayan JG, Nematollahi B, Xia M, Marchment T (2018) Effect of surface moisture on inter-layer strength of 3D printed concrete. Constr Build Mater 172:468–475. https://doi.org/10.1016/j.conbuildmat.2018.03.232
Ma G, Li Y, Wang L, Zhang J, Li Z (2021) Real-time quantification of fresh and hardened mechanical property for 3D printing material by intellectualization with piezoelectric transducers. Constr Build Mater 241:117982. https://doi.org/10.1016/j.conbuildmat.2019.117982
Panda B, Noor Mohamed NA, Paul SC, Bhagath Singh GVP, Tan MJ, Šavija B (2019) The effect of material fresh properties and process parameters on buildability and interlayer adhesion of 3D printed concrete. Mater 12:2149. https://doi.org/10.3390/ma12132149
Baz B, Aouad G, Khalil N, Rémond S (2021) Inter-layer reinforcement of 3D printed concrete elements. Asian J Civ Eng 22:341–349. https://doi.org/10.1007/s42107-020-00317-0
Van Der Putten J, Deprez M, Cnudde V, De Schutter G, Van Tittelboom K (2019) Microstructural characterization of 3D printed cementitious materials. Mater 12:2993. https://doi.org/10.3390/ma12182993
Betrancourt D, Chicot D, Kossman S, Louis G, Roudet F, Bulteel D (2019) Instrumented indentation study of slag in view of a better valorization. Constr Build Mater 199:349–358. https://doi.org/10.1016/j.conbuildmat.2018.12.002
Sonebi M (2008) Utilization of micro-indentation technique to determine the micromechanical properties of ITZ in cementitious materials. In: ACI Proceeding SP-254. vol 254, pp 57–68
Le T, Le Saout G, Garcia-Diaz E, Betrancourt D, Rémond S (2017) Hardened behavior of mortar based on recycled aggregate: influence of saturation state at macro and microscopic scales. Constr Build Mater 141:479–490. https://doi.org/10.1016/j.conbuildmat.2017.02.035
Taleb M, Bulteel D, Betrancourt D, Roudet F, Rémond S, Chicot D (2022) Interfacial weakness criterion by indentation in 3D printed concrete. 3D Print Addit Manuf. https://doi.org/10.1089/3dp.2021.0128
Roussel N, Cussigh F (2018) Distinct-layer casting of SCC: the mechanical consequences of thixotropy. Cem Concr Res 38:624–632. https://doi.org/10.1016/j.cemconres.2007.09.023
Zhang J, Scherer GW (2011) Comparison of methods for arresting hydration of cement. Cem Concr Res 41:1024–1036. https://doi.org/10.1016/j.cemconres.2011.06.003
ISO 6507–1 (2018) International standard metallic materials—Vickers hardness test—Part 1: test method. The international organization for standardization
NF EN 196–1 (2016) Methods of testing cement—Part 1: determination of strength. AFNOR.
Marchment T, Xia M, Dodd E, Sanjayan J, Nematollahi B (2017) Effect of delay time on the mechanical properties of extrusion-based 3D printed concrete. In: Proceeding ISARC, vol 34, pp. 240–245. https://doi.org/10.22260/ISARC2017/0032
Feng P, Meng X, Chen JF, Ye L (2015) Mechanical properties of structures 3D printed with cementitious powders. Constr Build Mater 93:486–497. https://doi.org/10.1016/j.conbuildmat.2015.05.132
Lee H, Kim JHJ, Moon JH, Kim WW, Seo EA (2019) Evaluation of the mechanical properties of a 3D-printed mortar. Mater 12:4104. https://doi.org/10.3390/ma12244104