Multi-scale Computational Models of Pro-angiogenic Treatments in Peripheral Arterial Disease

Springer Science and Business Media LLC - Tập 35 - Trang 982-994 - 2007
Feilim Mac Gabhann1, James W. Ji1, Aleksander S. Popel1
1Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, USA

Tóm tắt

The induction of angiogenesis is a promising therapeutic strategy for the amelioration of peripheral arterial disease (PAD). This occlusive disease results in muscle ischemia, and neovascularization is a route to increasing the perfusion in the tissue. The vascular endothelial growth factor (VEGF) family of potent pro-angiogenic cytokines is a potential therapeutic agent, increasing VEGF-receptor signaling on tissue vasculature. To investigate the effects of possible therapies on the VEGF concentrations and gradients within the tissue, we consider three such strategies: VEGF gene therapy (e.g. by adeno-associated virus); VEGF cell-based therapy (injected myoblasts that overexpress VEGF); and chronic exercise (which upregulates VEGF receptor expression). The multi-scale computational model used to investigate these strategies is an integration of several components: an anatomical description of the muscle geometry and cell types; microvascular blood flow; tissue oxygen distribution; VEGF secretion from muscle fibers; VEGF transport through interstitial space; and VEGF-receptor binding on microvascular endothelial cells. Exercise training, which results in increased VEGF secretion in hypoxic tissue and increased VEGF receptor expression, exhibits increases in both VEGF concentration and VEGF gradients, and is predicted to be more effective than the other, VEGF-only treatments.

Tài liệu tham khảo

Annex B. H., M. Simons (2005) Growth factor-induced therapeutic angiogenesis in the heart: protein therapy. Cardiovasc. Res. 65, 649–655 Banfi A., G. von Degenfeld, H. M. Blau (2005) Critical role of microenvironmental factors in angiogenesis. Curr. Atheroscler. Rep. 7, 227–234 Brown M. D., C. J. Kelsall, M. Milkiewicz, S. Anderson, O. Hudlicka (2005) A new model of peripheral arterial disease: sustained impairment of nutritive microcirculation and its recovery by chronic electrical stimulation. Microcirculation 12, 373–381 Byun J., J. M. Heard, J. E. Huh, S. J. Park, E. A. Jung, J. O. Jeong, H. C. Gwon, D. K. Kim (2001) Efficient expression of the vascular endothelial growth factor gene in vitro and in vivo, using an adeno-associated virus vector. J. Mol. Cell Cardiol. 33, 295–305 Chang D. S., H. Su, G. L. Tang, L. S. Brevetti, R. Sarkar, R. Wang, Y. W. Kan, L. M. Messina (2003) Adeno-associated viral vector-mediated gene transfer of VEGF normalizes skeletal muscle oxygen tension and induces arteriogenesis in ischemic rat hindlimb. Mol. Ther. 7, 44–51 Dai Q., J. Huang, B. Klitzman, C. Dong, P. J. Goldschmidt-Clermont, K. L. March, J. Rokovich, B. Johnstone, E. J. Rebar, S. K. Spratt, C. C. Case, C. D. Kontos, B. H. Annex (2004) Engineered zinc finger-activating vascular endothelial growth factor transcription factor plasmid DNA induces therapeutic angiogenesis in rabbits with hindlimb ischemia. Circulation 110, 2467–2475 Date T., S. Mochizuki, A. J. Belanger, M. Yamakawa, Z. Luo, K. A. Vincent, S. H. Cheng, R. J. Gregory, C. Jiang (2005) Expression of constitutively stable hybrid hypoxia-inducible factor-1alpha protects cultured rat cardiomyocytes against simulated ischemia-reperfusion injury. Am. J. Physiol. Cell Physiol. 288, C314–C320 Deindl E., I. Buschmann, I. E. Hoefer, T. Podzuweit, K. Boengler, S. Vogel, N. van Royen, B. Fernandez, W. Schaper (2001) Role of ischemia and of hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in the rabbit. Circ. Res. 89, 779–786 Desplanches D., M. H. Mayet, B. Sempore, J. Frutoso, R. Flandrois (1987) Effect of spontaneous recovery or retraining after hindlimb suspension on aerobic capacity. J. Appl. Physiol. 63, 1739–1743 Dormandy J. A., R. B. Rutherford (2000) Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlantic Inter-Society Concensus (TASC). J. Vasc. Surg. 31, S1–S296 Ferrara N. (2005) VEGF as a therapeutic target in cancer. Oncology 69 Suppl 3, 11–16 Ferrara N., R. S. Kerbel (2005) Angiogenesis as a therapeutic target. Nature 438, 967–974 Ferziger J. H. (1981) Numerical Methods for Engineering Application. New York: John Wiley and Sons Flessner M. F., J. Lofthouse, R. Zakaria el (1997) In vivo diffusion of immunoglobulin G in muscle: effects of binding, solute exclusion, and lymphatic removal. Am. J. Physiol. 273, H2783–H2793 Gerhardt H., M. Golding, M. Fruttiger, C. Ruhrberg, A. Lundkvist, A. Abramsson, M. Jeltsch, C. Mitchell, K. Alitalo, D. Shima, C. Betsholtz (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 Heil M., T. Ziegelhoeffer, S. Wagner, B. Fernandez, A. Helisch, S. Martin, S. Tribulova, W. A. Kuziel, G. Bachmann, W. Schaper (2004) Collateral artery growth (arteriogenesis) after experimental arterial occlusion is impaired in mice lacking CC-chemokine receptor-2. Circ. Res. 94, 671–677 Helisch A., S. Wagner, N. Khan, M. Drinane, S. Wolfram, M. Heil, T. Ziegelhoeffer, U. Brandt, J. D. Pearlman, H. M. Swartz, W. Schaper (2006) Impact of mouse strain differences in innate hindlimb collateral vasculature. Arterioscler. Thromb. Vasc. Biol. 26, 520–526 Herzog S., H. Sager, E. Khmelevski, A. Deylig, W. D. Ito (2002) Collateral arteries grow from preexisting anastomoses in the rat hindlimb. Am. J. Physiol. Heart Circ. Physiol. 283, H2012–H2020 Hoffner L., J. J. Nielsen, H. Langberg, Y. Hellsten (2003) Exercise but not prostanoids enhance levels of vascular endothelial growth factor and other proliferative agents in human skeletal muscle interstitium. J. Physiol. 550, 217–225 Hudlicka O., M. Milkiewicz, M. A. Cotter, M. D. Brown (2002) Hypoxia and expression of VEGF-A protein in relation to capillary growth in electrically stimulated rat and rabbit skeletal muscles. Exp. Physiol. 87, 373–381 Hughes G. C., B. H. Annex (2005) Angiogenic therapy for coronary artery and peripheral arterial disease. Expert Rev. Cardiovasc. Ther. 3, 521–535 Idris N. M., H. Haider, M. W. Goh, E. K. Sim (2004) Therapeutic angiogenesis for treatment of peripheral vascular disease. Growth Factors 22, 269–279 Japee S. A., R. N. Pittman, C. G. Ellis (2005) Automated method for tracking individual red blood cells within capillaries to compute velocity and oxygen saturation. Microcirculation 12, 507–515 Ji, J. W., F. Mac Gabhann, and A. S. Popel. Skeletal muscle VEGF gradients in Peripheral Arterial Disease: simulations of rest and exercise, 2006 (submitted) Ji J. W., N. M. Tsoukias, D. Goldman, A. S. Popel (2006) A computational model of oxygen transport in skeletal muscle for sprouting and splitting modes of angiogenesis. J. Theor. Biol. 241, 94–108 Jiang B. H., G. L. Semenza, C. Bauer, H. H. Marti (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol. 271, C1172–C1180 Kayar S. R., A. J. Lechner, N. Banchero (1982) The distribution of diffusion distances in the gastrocnemius muscle of various mammals during maturation. Pflugers Arch. 394, 124–129 Konopatskaya O., A. J. Churchill, S. J. Harper, D. O. Bates, T. A. Gardiner (2006) VEGF165b, an endogenous C-terminal splice variant of VEGF, inhibits retinal neovascularization in mice. Mol. Vis. 12, 626–632 Lloyd P. G., B. M. Prior, H. T. Yang, R. L. Terjung (2003) Angiogenic growth factor expression in rat skeletal muscle in response to exercise training. Am. J. Physiol. Heart Circ. Physiol. 284, H1668–H1678 Lo A., A. J. Fuglevand, T. W. Secomb (2003) Oxygen delivery to skeletal muscle fibers: effects of microvascular unit structure and control mechanisms. Am. J. Physiol. Heart Circ. Physiol. 285, H955–H963 Mac Gabhann F., J. W. Ji, A. S. Popel (2006) Computational model of VEGF spatial distribution in muscle and pro-angiogenic cell therapy. PLoS Comput. Biol. 2, e127 Mac Gabhann, F., J. W. Ji, and A. S. Popel. VEGF gradients, receptor activation, and sprout guidance in resting and exercising skeletal muscle. J. Appl. Physiol. 102:722–734, 2007 Mac Gabhann F., A. S. Popel (2004) Model of competitive binding of vascular endothelial growth factor and placental growth factor to VEGF receptors on endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 286, H153–H164 Mac Gabhann F., A. S. Popel (2005) Differential binding of VEGF isoforms to VEGF receptor 2 in the presence of neuropilin-1: a computational model. Am. J. Physiol. Heart Circ. Physiol. 288, H2851–H2860 Mac Gabhann, F., and A. S. Popel. Dimerization of VEGF receptors and implications for signal transduction: a computational study. Biophys. Chem., in press (2007) Mac Gabhann, F., and A. S. Popel. Interactions of VEGF isoforms with VEGFR1, VEGFR2 and Neuropilin in vivo: applications to human skeletal muscle. Am. J. Physiol. Heart Circ. Physiol. 292:H459–H474, 2007 Maruotti N., F. P. Cantatore, E. Crivellato, A. Vacca, D. Ribatti (2006) Angiogenesis in rheumatoid arthritis. Histol. Histopathol. 21, 557–566 Mathieu-Costello O., H. Hoppeler, E. R. Weibel (1989) Capillary tortuosity in skeletal muscles of mammals depends on muscle contraction. J. Appl. Physiol. 66, 1436–1442 Milkiewicz M., M. D. Brown, S. Egginton, O. Hudlicka (2001) Association between shear stress, angiogenesis, and VEGF in skeletal muscles in vivo. Microcirculation 8, 229–241 Milkiewicz M., O. Hudlicka, J. Verhaeg, S. Egginton, M. D. Brown (2003) Differential expression of Flk-1 and Flt-1 in rat skeletal muscle in response to chronic ischaemia: favourable effect of muscle activity. Clin. Sci. (Lond.) 105, 473–482 Milkiewicz M., E. Ispanovic, J. L. Doyle, T. L. Haas (2006) Regulators of angiogenesis and strategies for their therapeutic manipulation. Int. J. Biochem. Cell Biol. 38, 333–357 Osawa T., M. Onodera, X. Y. Feng, Y. Nozaka (2003) Comparison of the thickness of basement membranes in various tissues of the rat. J. Electron. Microsc. (Tokyo) 52, 435–440 Ozawa C. R., A. Banfi, N. L. Glazer, G. Thurston, M. L. Springer, P. E. Kraft, D. M. McDonald, H. M. Blau (2004) Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J. Clin. Invest. 113, 516–527 Paek R., D. S. Chang, L. S. Brevetti, M. D. Rollins, S. Brady, P. C. Ursell, T. K. Hunt, R. Sarkar, L. M. Messina (2002) Correlation of a simple direct measurement of muscle pO(2) to a clinical ischemia index and histology in a rat model of chronic severe hindlimb ischemia. J. Vasc. Surg. 36, 172–179 Peirce S. M., E. J. Van Gieson, T. C. Skalak (2004) Multicellular simulation predicts microvascular patterning and in silico tissue assembly. Faseb J. 18, 731–733 Pries A. R., T. W. Secomb (2005) Microvascular blood viscosity in vivo and the endothelial surface layer. Am. J. Physiol. Heart Circ. Physiol. 289, H2657–H2664 Prior B. M., H. T. Yang, R. L. Terjung (2004) What makes vessels grow with exercise training? J. Appl. Physiol. 97, 1119–1128 Qutub A. A., A. S. Popel (2006) A computational model of intracellular oxygen sensing by hypoxia-inducible factor HIF1α. J. Cell Sci. 119, 3467–3480 Rajagopalan S., E. Mohler 3rd, R. J. Lederman, J. Saucedo, F. O. Mendelsohn, J. Olin, J. Blebea, C. Goldman, J. D. Trachtenberg, M. Pressler, H. Rasmussen, B. H. Annex, A. T. Hirsch (2003) Regional angiogenesis with vascular endothelial growth factor (VEGF) in peripheral arterial disease: design of the RAVE trial. Am. Heart J. 145, 1114–1118 Regensteiner J. G., W. R. Hiatt (2002) Current medical therapies for patients with peripheral arterial disease: a critical review. Am. J. Med. 112, 49–57 Rivard A., M. Silver, D. Chen, M. Kearney, M. Magner, B. Annex, K. Peters, J. M. Isner (1999) Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am. J. Pathol. 154, 355–363 Ruhrberg C., H. Gerhardt, M. Golding, R. Watson, S. Ioannidou, H. Fujisawa, C. Betsholtz, D. T. Shima (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev. 16, 2684–2698 Schiekofer S., G. Galasso, K. Sato, B. J. Kraus, K. Walsh (2005) Impaired revascularization in a mouse model of type 2 diabetes is associated with dysregulation of a complex angiogenic-regulatory network. Arterioscler. Thromb. Vasc. Biol. 25, 1603–1609 Shen J., R. Samul, R. L. Silva, H. Akiyama, H. Liu, Y. Saishin, S. F. Hackett, S. Zinnen, K. Kossen, K. Fosnaugh, C. Vargeese, A. Gomez, K. Bouhana, R. Aitchison, P. Pavco, P. A. Campochiaro (2006) Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther. 13, 225–234 Shibuya M., L. Claesson-Welsh (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp. Cell Res. 312, 549–560 Shweiki D., A. Itin, D. Soffer, E. Keshet (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 Soker S., H. Q. Miao, M. Nomi, S. Takashima, M. Klagsbrun (2002) VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J. Cell Biochem. 85, 357–368 Sun S., M. F. Wheeler, M. Obeyesekere, C. W. Patrick Jr. (2005) A deterministic model of growth factor-induced angiogenesis. Bull. Math. Biol. 67, 313–337 Tang K., E. C. Breen, H. Wagner, T. D. Brutsaert, M. Gassmann, P. D. Wagner (2004) HIF and VEGF relationships in response to hypoxia and sciatic nerve stimulation in rat gastrocnemius. Respir. Physiol. Neurobiol. 144, 71–80 Trentin D., H. Hall, S. Wechsler, J. A. Hubbell (2006) Peptide-matrix-mediated gene transfer of an oxygen-insensitive hypoxia-inducible factor-1alpha variant for local induction of angiogenesis. Proc. Natl. Acad. Sci. USA 103, 2506–2511 Tuomisto T. T., T. T. Rissanen, I. Vajanto, A. Korkeela, J. Rutanen, S. Yla-Herttuala (2004) HIF–VEGF–VEGFR-2, TNF-alpha and IGF pathways are upregulated in critical human skeletal muscle ischemia as studied with DNA array. Atherosclerosis 174, 111–120 Tyml K., O. Mathieu-Costello, L. Cheng, E. G. Noble (1999) Differential microvascular response to disuse in rat hindlimb skeletal muscles. J. Appl. Physiol. 87, 1496–1505 van Weel V., M. M. Deckers, J. M. Grimbergen, K. J. van Leuven, J. H. Lardenoye, R. O. Schlingemann, G. P. van Nieuw Amerongen, J. H. van Bockel, V. W. van Hinsbergh, P. H. Quax (2004) Vascular endothelial growth factor overexpression in ischemic skeletal muscle enhances myoglobin expression in vivo. Circ. Res. 95, 58–66 Ward K. R., I. Torres Filho, R. W. Barbee, L. Torres, M. H. Tiba, P. S. Reynolds, R. N. Pittman, R. R. Ivatury, J. Terner (2006) Resonance Raman spectroscopy: a new technology for tissue oxygenation monitoring. Crit. Care Med. 34, 792–799 Waters R. E., R. L. Terjung, K. G. Peters, B. H. Annex (2004) Preclinical models of human peripheral arterial occlusive disease: implications for investigation of therapeutic agents. J. Appl. Physiol. 97, 773–780 Whitaker G. B., B. J. Limberg, J. S. Rosenbaum (2001) Vascular endothelial growth factor receptor-2 and neuropilin-1 form a receptor complex that is responsible for the differential signaling potency of VEGF(165) and VEGF(121). J. Biol. Chem. 276, 25520–25531 Williams R. S., B. H. Annex (2004) Plasticity of myocytes and capillaries: a possible coordinating role for VEGF. Circ. Res. 95, 7–8 Zheng X., S. M. Wise, V. Cristini (2005) Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull. Math. Biol. 67, 211–259