Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tối ưu hóa đa phản hồi trong quá trình khí hóa vỏ trái ca cao (Theobroma cacao) và hiệu suất của nó trong động cơ đa nhiên liệu
Tóm tắt
Việc thay thế một phần nhiên liệu thông thường trong động cơ đốt trong bằng nhiên liệu sinh khí từ sinh khối là một trong những lựa chọn tốt nhất để thực hiện sinh khối trong sản xuất năng lượng phân tán. Trong nghiên cứu này, một động cơ đốt nén, thường được sử dụng trong sản xuất năng lượng quy mô nhỏ, đã được thử nghiệm hoạt động trên dầu diesel và khí sinh ra từ vỏ trái ca cao (CPH). Động cơ đã được điều chỉnh để hoạt động với chế độ đa nhiên liệu cũng như nhiều tỉ số nén khác nhau. Thiết kế tổng hợp trung tâm đã được sử dụng để tối ưu hóa các thông số vận hành và hiệu suất. Tại tỉ số nén 18, các thông số hiệu suất như hiệu suất tổng quát (BTE) và tỷ lệ nhiên liệu tiêu thụ (DRR) đều cao, trong khi đó, lượng nhiên liệu tiêu thụ ước lượng (BSFC) và tiêu thụ năng lượng đặc trưng (SEC) đều thấp. Trong chế độ đa nhiên liệu, tổng lượng dầu diesel được thay thế là 72.57%. Hơn nữa, hiệu suất nhiệt phanh (BTE) đạt 22.18% và 27.17% cho tỉ số nén 12 và 18, tương ứng. Trong điều kiện tối ưu, lượng phát thải CO, NOx, HC và khói lần lượt là 0.17 vol%, 250.06 ppm, 19.94 ppm và 22.81%. Hiệu suất của động cơ cho thấy rằng CPH có thể là nguyên liệu đầu vào tiềm năng để cung cấp nhiên liệu khí sạch hơn cho hoạt động đa nhiên liệu. Hơn nữa, dự đoán từ nghiên cứu cho thấy rằng phương pháp bề mặt phản hồi có thể là một phương pháp thích hợp để đánh giá các điều kiện làm việc tối ưu của động cơ đa nhiên liệu.
Từ khóa
#năng lượng sinh khối #động cơ đốt trong #khí hóa #vỏ trái ca cao #tỉ số nén #nhiên liệu đa chaoTài liệu tham khảo
Kalghatgi G (2018) Is it really the end of internal combustion engines and petroleum in transport? Appl energy 225:965–974. https://doi.org/10.1016/j.apenergy.2018.05.076
Deviram G, Mathimani T, Anto S, Ahamed TS, Ananth DA, Pugazhendhi A (2020) Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. J Clean Prod 253:119770. https://doi.org/10.1016/j.jclepro.2019.119770
Mathimani T, Baldinelli A, Rajendran K, Prabakar D, Matheswaran M, van Leeuwen RP, Pugazhendhi A (2019) Review on cultivation and thermochemical conversion of microalgae to fuels and chemicals: process evaluation and knowledge gaps. J Clean Prod 208:1053–1064. https://doi.org/10.1016/j.jclepro.2018.10.096
Situmorang YA, Zhao Z, Yoshida A, Abudula A, Guan G (2020) Small-scale biomass gasification systems for power generation (< 200 kW class): a review. Renew Sustain Energy Rev 117:109486. https://doi.org/10.1016/j.rser.2019.109486
Kumar A, Kumar N, Baredar P, Shukla A (2015) A review on biomass energy resources, potential, conversion and policy in India. Renew Sustain Energy Rev 45:530–539. https://doi.org/10.1016/j.rser.2015.02.007
Yadav JP (2017) Performance analysis of producer gas based diesel engine. Int J Engg Innova Res 2013;2(1):42.
Murugan PC, Joseph Sekhar S. Numerical simulation of Imbert biomass gasifier to select the feedstock available in remote areas. Environ Prog Sustain Energy 36(3):708–16. https://doi.org/10.1002/ep.12485.
Singh VC, Sekhar SJ (2016) Performance studies on a downdraft biomass gasifier with blends of coconut shell and rubber seed shell as feedstock. Appl Therm Eng 97:22–27. https://doi.org/10.1016/j.applthermaleng.2015.09.099
Murugan PC, Sekhar SJ (2017) Species–transport CFD model for the gasification of rice husk (Oryza sativa) using downdraft gasifier. Comput Electron Agric 139:33–40. https://doi.org/10.1016/j.compag.2017.05.004
Murugan PC, Sekhar SJ (2017) Numerical studies to predict the impact of air nozzle position and inclination on the performance of downdraft gratifier. J Appl Fluid Mech 10(3):947–55. https://doi.org/10.18869/acadpub.jafm.73.240.26446
Augustine MA, Sekhar SJ (2019) Improvement in the calorific value of producer gas from rice husk with addition of spent tea waste as secondary fuel. Energ Fuel 33(12):12492–12498. https://doi.org/10.1021/acs.energyfuels.9b03052
Murugan PC, Sekhar SJ (2021) Investigation on the yield of producer gas from tamarind shell (Tamarindus indica) as feedstock in an Imbert type biomass gasifier. Fuel 292:120310. https://doi.org/10.1016/j.fuel.2021.120310
Malek AA, Hasanuzzaman M, Abd Rahim N (2020) Prospects, progress, challenges and policies for clean power generation from biomass resources. Clean Technol Environ Policy 22(6):1229–1253. https://doi.org/10.1007/s10098-020-01873-4
Prasad GA, Murugan PC, Wincy WB, Sekhar SJ (2021) Response surface methodology to predict the performance and emission characteristics of gas-diesel engine working on producer gases of non-uniform calorific values. Energy 121225.https://doi.org/10.1016/j.energy.2021.121225
Situmorang YA, Zhao Z, Yoshida A, Abudula A, Guan G (2020) Small-scale biomass gasification systems for power generatio (< 200 kW class): a review. Renew Sustain Energy Rev 117:109486
Singh P, Kumar R, Sharma S, Kumar S (2021) Effect of engine parameters on the performance of dual-fuel CI engines with producer gas—a review. Energy Fuels 35(20):16377–16402. https://doi.org/10.1021/acs.energyfuels.1c02279
Sharma M, Kaushal R (2021) Performance and exhaust emission analysis of a variable compression ratio (VCR) dual fuel CI engine fuelled with producer gas generated from pistachio shells. Fuel 283:118924. https://doi.org/10.1016/j.fuel.2020.118924
Singh H, Mohapatra SK (2018) Production of producer gas from sugarcane bagasse and carpentry waste and its sustainable use in a dual fuel CI engine: a performance, emission, and noise investigation. J Energy Inst 91(1):43–54. https://doi.org/10.1016/j.joei.2016.11.002
Sharma M, Kaushal R (2020) Performance and emission analysis of a dual fuel variable compression ratio (VCR) CI engine utilizing producer gas derived from walnut shells. Energy 192:116725. https://doi.org/10.1016/j.energy.2019.116725
Pandian M, Sivapirakasam SP, Udayakumar M (2011) Investigation on the effect of injection system parameters on performance and emission characteristics of a twin cylinder compression ignition direct injection engine fuelled with pongamia biodiesel–diesel blend using response surface methodology. Appl Energy 88(8):2663–2676. https://doi.org/10.1016/j.apenergy.2011.01.069
Khoobbakht G, Najafi G, Karimi M, Akram A (2016) Optimization of operating factors and blended levels of diesel, biodiesel and ethanol fuels to minimize exhaust emissions of diesel engine using response surface methodology. Appl Therm Eng 99:1006–1017. https://doi.org/10.1016/j.applthermaleng.2015.12.143
Sharma P, Sharma AK (2021) Application of response surface methodology for optimization of fuel injection parameters of a dual fuel engine fuelled with producer gas-biodiesel blends. Energy Sources A: Recovery Util Environ Eff 1-8.https://doi.org/10.1080/15567036.2021.1892883
Ileri E, Karaoglan AD, Atmanli A (2013) Response surface methodology-based prediction of engine performance and exhaust emissions of a diesel engine fuelled with canola oil methyl ester. J Renew Sustain Energy 5(3):033132. https://doi.org/10.1063/1.4811801
Rith M, Biona JB (2021) Development of mathematical models for engine performance and emissions of the producer gas-diesel dual fuel mode using response surface methodology. Eng Appl Sci Res 48(1):18–32. https://doi.org/10.14456/easr.2021.3
Saidur R, Jahirul MI, Hasanuzzaman M, Masjuki HH (2008) Analysis of exhaust emissions of natural gas engine by using response surface methodology. J Appl Sci 8(19):3328–3339. https://doi.org/10.3923/jas.2008.3328.3339
Atmanlı A, Yüksel B, Ileri E, Karaoglan AD (2015) Response surface methodology based optimization of diesel–n-butanol–cotton oil ternary blend ratios to improve engine performance and exhaust emission characteristics. Energy Convers Manag 90:383–394. https://doi.org/10.1016/j.enconman.2014.11.029
Atmanli A, Ileri E, Yilmaz N (2016) Optimization of diesel–butanol–vegetable oil blend ratios based on engine operating parameters. Energy 96:569–580. https://doi.org/10.1016/j.energy.2015.12.091
Natarajan E, Baskara Sethupathy S (2015) Gasification of groundnut shells. Energ Source Part A 37(9):980–986. https://doi.org/10.1080/15567036.2011.601791
Vyas DK, Singh RN (2007) Feasibility study of Jatropha seed husk as an open core gasifier feedstock. Renew energy 32(3):512–517. https://doi.org/10.1016/j.renene.2006.06.006
Sheth PN, Babu BV (2009) Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier. Bioresour Technol 100(12):3127–3133. https://doi.org/10.1016/j.biortech.2009.01.024
Shrivastava V, Jha AK, Wamankar AK, Murugan S (2013) Performance and emission studies of a CI engine coupled with gasifier running in dual fuel mode. Procedia Eng 51:600–608. https://doi.org/10.1016/j.proeng.2013.01.085
Singh RN, Jena U, Patel JB, Sharma AM (2006) Feasibility study of cashew nut shells as an open core gasifier feedstock. Renew energy 31(4):481–487. https://doi.org/10.1016/j.renene.2005.04.010
Nisamaneenate J, Atong D, Sornkade P, Sricharoenchaikul V (2015) Fuel gas production from peanut shell waste using a modular downdraft gasifier with the thermal integrated unit. Renew energy 79:45–50. https://doi.org/10.1016/j.renene.2014.09.046
Sombatwong P, Thaiyasuit P, Pianthong K (2013) Effect of pilot fuel quantity on the performance and emission of a dual producer gas–diesel engine. Energy procedia 34:218–227. https://doi.org/10.1016/j.egypro.2013.06.750
Dahunsi SO, Adesulu-Dahunsi AT, Izebere JO (2019) Cleaner energy through liquefaction of cocoa (Theobroma cacao) pod husk: pretreatment and process optimization. J Clean Prod 226:578–588. https://doi.org/10.1016/j.jclepro.2019.04.112
Oddoye EO, Agyente-Badu CK, Gyedu-Akoto E (2013) Cocoa and its by-products: identification and utilization. In Chocolate in health and nutrition 23-37.https://doi.org/10.1007/978-1-61779-803-0_3
Vriesmann LC, Amboni RD, de Oliveira Petkowicz CL (2011) Cacao pod husks (Theobroma cacao L.): composition and hot-water-soluble pectins. Ind Crops Prod 34(1):1173–81. https://doi.org/10.1016/j.indcrop.2011.04.004
Nayak C, Sahoo BB (2020) Comparative assessment of biogas and producer gas with diesel in a twin cylinder dual-fuel diesel engine. J Braz Soc Mech Sci & Eng 42(10):1–1. https://doi.org/10.1007/s40430-020-02615-9
Sandesh K, Shishir RK, Rao CV (2020) Optimization and comparison of induction heating and LPG assisted acid pretreatment of cocoa pod for ABE fermentation. Fuel 262:116499. https://doi.org/10.1016/j.fuel.2019.116499
Gunasekaran AP, Chockalingam MP, Padmavathy SR, Santhappan JS (2021) Numerical and experimental investigation on the thermochemical gasification potential of cocoa pod husk (Theobroma cacoa) in an open-core gasifier. Clean Technol Environ Policy 1-3.https://doi.org/10.1007/s10098-021-02051-w
Basu P (2010) Biomass gasification and pyrolysis: practical design and theory. Academic press.
Patel VR, Upadhyay DS, Patel RN (2014) Gasification of lignite in a fixed bed reactor: influence of particle size on performance of downdraft gasifier. Energy 78:323–332. https://doi.org/10.1016/j.energy.2014.10.017
Awais M, Li W, Munir A, Omar MM, Ajmal M (2021) Experimental investigation of downdraft biomass gasifier fed by sugarcane bagasse and coconut shells. Biomass Convers Biorefin 11(2):429–444
Dhole AE, Yarasu RB, Lata DB, Baraskar SS, Shaw D (2015) Mathematical modeling for the performance and emission parameters of dual-fuel diesel engine using producer gas as secondary fuel. Biomass Convers Bior 5(3):257–270. https://doi.org/10.1007/s13399-014-0142-6
Rith M, Arbon NA, Biona JB (2019) Optimization of diesel injection timing, producer gas flow rate, and engine load for a diesel engine operated on dual fuel mode at a high engine speed. Eng Appl Sci Res 46(3):192–199
Yaliwal VS, Banapurmath NR, Gaitonde VN, Malipatil MD (2019) Simultaneous optimization of multiple operating engine parameters of a biodiesel-producer gas operated compression ignition (CI) engine coupled with hydrogen using response surface methodology. Renew Energy 139:944–959. https://doi.org/10.1016/j.renene.2019.02.104
Balakrishnan N, Mayilsamy K (2014) Effect of compression ratio on compression ignition engine performance with biodiesel and producer gas in mixed fuel mode. J Renew Sustain Energy 6(2):023103. https://doi.org/10.1063/1.4868026
Nayak SK, Mishra PC (2017) Emission from a dual fuel operated diesel engine fuelled with Calophyllum inophyllum biodiesel and producer gas. Int J Automot Mech Eng 14(1). https://doi.org/10.15282/ijame.14.1.2017.11.0321.
Bayat Y, Ghazikhani M (2020) Experimental investigation of compressed natural gas using in an indirect injection diesel engine at different conditions. J Clean Prod 271:122450. https://doi.org/10.1016/j.jclepro.2020.122450
Nayak SK, Mishra PC, Noor MM, Hagos FY, Kadirgama K, Mamat R (2019) The performance of turbocharged diesel engine with injected Calophyllum inophyllum methyl ester blends and inducted babul wood gaseous fuels. Fuel 257:116060. https://doi.org/10.1016/j.fuel.2019.116060
Lal S, Mohapatra SK (2017) The effect of compression ratio on the performance and emission characteristics of a dual fuel diesel engine using biomass derived producer gas. Appl Therm Eng 119:63–72. https://doi.org/10.1016/j.applthermaleng.2017.03.038
Nayak SK, Nayak B, Mishra PC, Noor MM, Nanda S (2019) Effects of biodiesel blends and producer gas flow on overall performance of a turbocharged direct injection dual-fuel engine. Energ Sources Part A 1-20.https://doi.org/10.1080/15567036.2019.1694101
Babu MS, Clement S, Rajan NK (2019) Adaptation of air-gas regulator for small capacity producer gas engine. Energy Procedia 156:435–441. https://doi.org/10.1016/j.egypro.2018.11.091
Suresh G, Kamath HC, Banapurmath NR (2014) Effects of injection timing, injector opening pressure and nozzle geometry on the performance of cottonseed oil methyl ester-fuelled diesel engine. Int J Sustain Eng 7(1):82–92. https://doi.org/10.1080/19397038.2013.811703
Yaliwal VS, Banapurmath NR, Tewari PG (2014) Performance, combustion and emission characteristics of a single-cylinder, four-stroke, direct injection diesel engine operated on a dual-fuel mode using honge oil methyl ester and producer gas derived from biomass feedstock of different origin. Int J Sustain Eng 7(3):253–268. https://doi.org/10.1080/19397038.2013.834395
Najafi G, Ghobadian B, Yusaf T, Ardebili SM, Mamat R (2015) Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology. Energy 90:1815–1829. https://doi.org/10.1016/j.energy.2015.07.004
Kashyap D, Das S, Kalita P (2021) Exploring the efficiency and pollutant emission of a dual fuel CI engine using biodiesel and producer gas: an optimization approach using response surface methodology. Sci Total Environ 773:145633. https://doi.org/10.1016/j.scitotenv.2021.145633
Kamaraj RK, Gowthami Thankachi Raghuvaran J, Panimayam AF, Allasi HL (2018) Performance and exhaust emission optimization of a dual fuel engine by response surface methodology. Energies 11(12):3508. https://doi.org/10.3390/en11123508
Simsek S, Uslu S (2020) Determination of a diesel engine operating parameters powered with canola, safflower and waste vegetable oil based biodiesel combination using response surface methodology (RSM). Fuel 270:117496. https://doi.org/10.1016/j.fuel.2020.117496
Halewadimath SS, Banapurmath NR, Yaliwal VS, Nataraja KM (2019) Effect of engine variables on combustion characteristics of a dual fuel engine powered by neem oil methyl ester and producer gas. Int J Ambient Energy 1-3.https://doi.org/10.1080/01430750.2019.1696889
Guo H, Liko B, Luque L, Littlejohns J (2018) Combustion performance and unburned hydrocarbon emissions of a natural gas–diesel dual fuel engine at a low load condition. J Eng Gas Turbines Power 140(11). https://doi.org/10.1115/1.4039758.
Yoon SH, Lee CS (2011) Experimental investigation on the combustion and exhaust emission characteristics of biogas–biodiesel dual-fuel combustion in a CI engine. Fuel Process Technol 92(5):992–1000. https://doi.org/10.1016/j.fuproc.2010.12.021
Ambarita H (2017) Performance and emission characteristics of a small diesel engine run in dual-fuel (diesel-biogas) mode. Case Stud Therm Eng 10:179–191. https://doi.org/10.1016/j.csite.2017.06.003
Homdoung N, Tippayawong N, Dussadee N (2015) Performance and emissions of a modified small engine operated on producer gas. Energy Convers Manag 94:286–292. https://doi.org/10.1016/j.enconman.2015.01.078
Singh J, Singh S, Mohapatra SK (2020) Production of syngas from agricultural residue as a renewable fuel and its sustainable use in dual-fuel compression ignition engine to investigate performance, emission, and noise characteristics. Energ Source Part A 42(1):41–55. https://doi.org/10.1080/15567036.2019.1587053
Hernández JJ, Lapuerta M, Barba J (2015) Effect of partial replacement of diesel or biodiesel with gas from biomass gasification in a diesel engine. Energy 89:148–157. https://doi.org/10.1016/j.energy.2015.07.050
Banapurmath NR, Tewari PG (2009) Comparative performance studies of a 4-stroke CI engine operated on dual fuel mode with producer gas and honge oil and its methyl ester (HOME) with and without carburetor. Renew Energy 34(4):1009–1015. https://doi.org/10.1016/j.renene.2008.08.005
Yaliwal VS, Banapurmath NR, Gireesh NM, Hosmath RS, Donateo T, Tewari PG (2016) Effect of nozzle and combustion chamber geometry on the performance of a diesel engine operated on dual fuel mode using renewable fuels. Renew Energy 93:483–501. https://doi.org/10.1016/j.renene.2016.03.020
Ramadhas AS, Jayaraj S, Muraleedharan C (2008) Dual fuel mode operation in diesel engines using renewable fuels: rubber seed oil and coir-pith producer gas. Renew Energy 33(9):2077–2083. https://doi.org/10.1016/j.renene.2007.11.013
Benson RS, Ledger JD, Whitehouse ND, Walmsley S (1973) Comparison of experimental and simulated transient responses of a turbocharged diesel engine. SAE Transactions 2424–47.