Multi-response mathematical modelling, optimization and prediction of weld bead geometry in gas tungsten constricted arc welding (GTCAW) of Inconel 718 alloy sheets for aero-engine components
Tóm tắt
Từ khóa
Tài liệu tham khảo
Antony J (2003) Design of experiments for engineers and scientists. Heinemann, Oxford
Balasubramanian M, Jayabalan V, Balasubramanian V (2008a) Developing mathematical models to predict tensile properties of pulsed current gas tungsten arc welded Ti-6Al-4V alloy. Mater Des 29:92–97. https://doi.org/10.1016/j.matdes.2006.12.001
Balasubramanian M, Jayabalan V, Balasubramanian V (2008b) Developing mathematical models to predict grain size and hardness of argon tungsten pulsed current arc welded titanium alloy. J Mater Proc Techno 196:222–229. https://doi.org/10.1016/j.jmatprotec.2007.05.039
Benyounis KY, Olabi AG, Hashmi MSJ (2005) Optimizing the laser-welded butt joints of medium carbon steel using RSM. J Mater Proc Techno 164:986–989. https://doi.org/10.1016/j.jmatprotec.2005.02.067
Cao X, Rivaux B, Jahazi M, Cuddy J, Birur A (2009) Effect of pre- and post-weld heat treatment on metallurgical and tensile properties of Inconel 718 alloy butt joints welded using 4 kW Nd: YAG laser. J Mater Sci 44:4557–4571. https://doi.org/10.1007/s10853-009-3691-5
Cortés R, Barragán ER, López VH, Ambriz RR, Jaramillo D (2017) Mechanical properties of Inconel 718 welds performed by gas tungsten arc welding. Inter J Adv Manuf Technol 94:3949–3961. https://doi.org/10.1007/s00170-017-1128-x
Dong JX, Xie XS, Thompson RG (2000) The influence of sulfur on stress-rupture fracture in Inconel 718 superalloys. Metall Mater Trans A 31(9):2135–2144
French R, Marin-Reyes H, Rendell-Read A (2017) A robotic re-manufacturing system for high-value aerospace repair and overhaul. Trans Intell Weld Manuf 1:36–47. https://doi.org/10.1007/978-981-10-5355-9_3
Henderson MB, Arrell D, Larsson R, Heobel M, Marchant G (2004) Nickel based superalloy welding practices for industrial gas turbine applications. Sci Technol Weld Join 9(1):13–21. https://doi.org/10.1179/136217104225017099
Hong JK, Park JH, Park NK, Eom IS, Kim MB, Kang CY (2008) Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding. J Mater Proc Techno 201:515–520. https://doi.org/10.1016/j.jmatprotec.2007.11.224
Kiaee N, Aghaie-Khafri M (2014) Optimization of gas tungsten arc welding process by response surface methodology. Mater Des 54:25–31. https://doi.org/10.1016/j.matdes.2013.08.032
Leary R, Merson E, Birmingham K, Harvey D, Brydson R (2010a) Microstructural and microtextural analysis of InterPulse GTCAW welds in Cp-Ti and Ti–6Al–4V. Mater Sci Eng A 527:7694–7705. https://doi.org/10.1016/j.msea.2010.08.036
Leary R, Merson E, Brydson R (2010) Microtextures and grain boundary misorientation distributions in controlled heat input titanium alloy fusion welds. J Phys: Conf Ser 241:012103
Liu Y, Zhang H, Guo Q, Zhou X, Ma Z, Huang Y, Li H (2018) Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency. Act Metall Sin 54:1653–1664. https://doi.org/10.11900/0412.1961.2018.00340
Mei Y, Liu Y, Liu C, Li C, Yu L, Guo Q, Li H (2016) Effect of base metal and welding speed on fusion zone microstructure and HAZ hot-cracking of electron-beam welded Inconel 718. Mater Des 89:964–977. https://doi.org/10.1016/j.matdes.2015.10.082
Montgomery DC (1997) Design and analysis of experiment. Wiley, New York
Padmanaban G, Balasubramanian V (2011) Optimization of pulsed current gas tungsten arc welding process parameters to attain maximum tensile strength in AZ31B magnesium alloy. Trans Nonferr Met Soc China 21:467–476. https://doi.org/10.1016/S1003-6326(11)60738-3
Pollock TM, Tin S (2006) Nickel-based superalloys for advanced turbine engines: chemistry. Microstruct Properties J Prop Power 22(2):361–374. https://doi.org/10.2514/1.18239
Radhakrishna CH, Rao KP (1994) Studies on creep/stress rupture behaviour of superalloy 718 weldments used in gas turbine applications. Mater High Temp 12(4):323–327. https://doi.org/10.1080/09603409.1994.11752536
Radhakrishna CH, Rao KP, Srinivas S (1995) Laves phase in superalloy 718 weld metals. J Mater Sci Lett 14:1810–1812. https://doi.org/10.1007/BF00271015
Rajakumar S, Balasubramanian V (2012) Multi-response optimization of friction-stir-welded AA1100 aluminium alloy joints. J Mater Eng Perform 21:809–822. https://doi.org/10.1007/s11665-011-9979-z
Ram GDJ, Reddy AV, Rao KP, Reddy GM (2005) Microstructure and mechanical properties of Inconel 718 electron beam welds. Mater Sci Techno 21:1132–1138. https://doi.org/10.1179/174328405X62260
Ram GDJ, Venugopal Reddy A, Prasad Rao K, Madhusudhan Reddy G (2004) Control of Laves phase in Inconel 718 GTA welds with current pulsing. Sci Techno Weld Join 9:390–398. https://doi.org/10.1179/136217104225021788
Ram GDJ, Venugopal Reddy A, Prasad Rao K, Reddy GM, Sarin Sundar JK (2005) Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds. J Mater Proc Techno 167:73–82. https://doi.org/10.1016/j.jmatprotec.2004.09.081
Razal Rose A, Manisekar K, Balasubramanian V, Rajakumar S (2012) Prediction and optimization of pulsed current tungsten inert gas welding parameters to attain maximum tensile strength in AZ61A magnesium alloy. Mater Des 37:334–348. https://doi.org/10.1016/j.matdes.2012.01.007
Reddy GM, Srinivasa Murthy CV, Srinivasa Rao K, Prasad Rao K (2008) Improvement of mechanical properties of Inconel 718 electron beam welds—influence of welding techniques and post weld heat treatment. Inter J Adv Manuf Techno 43:671–680. https://doi.org/10.1007/s00170-008-1751-7
Rodríguez NK, Barragán ER, Lijanova IV, Cortés R, Ambriz RR, Méndez C, Jaramillo D (2017) Heat Input Effect on the Mechanical Properties of Inconel 718 Gas Tungsten Arc Welds. Proceed 17th Inter Conf New Trends in Fat and Fract 255–262. https://doi.org/10.1007/978-3-319-70365-7_29
Sivaprasad K, Ganesh Sundara Raman S, Mastanaiah P, Madhusudhan Reddy G (2006) Influence of magnetic arc oscillation and current pulsing on microstructure and high temperature tensile strength of alloy 718 TIG weldments. Mater Sci Eng A 428:327–331. https://doi.org/10.1016/j.msea.2006.05.046
Sonar T, Balasubramanian V, Malarvizhi S, Venkateswaran T, Sivakumar D (2019) Effect of delta current and delta current frequency on tensile properties and microstructure of gas tungsten constricted arc (GTCA) welded Inconel 718 sheets. J Mech Behav Mater 28:186–200. https://doi.org/10.1515/jmbm-2019-0020
Sonar T, Balasubramanian V, Malarvizhi S, Venkateswaran T, Sivakumar D (2020) Effect of heat input on microstructural evolution and tensile properties of gas tungsten constricted arc (GTCA) welded Inconel 718 sheets. Metall Micro Anal 9:369–392. https://doi.org/10.1007/s13632-020-00654-1
Sudarshan Rao G, Saravanan K, Harikrishnan G, Sharma VMJ, Ramesh Narayan P, Sreekumar K, Sinha P (2012) Local deformation behaviour of Inconel 718 TIG weldments at room temperature and 550 °C. Mater Sci Forum 710:439–444. https://doi.org/10.4028/www.scientific.net/MSF.710.439
Xie X.S, Dong JX, Zhang MC (2007) Research and Development of Inconel 718 Type Superalloy. Mater Sci Forum 539:262–269 https://doi.org/10.4028/www.scientific.net/MSF.539-543.262