Phân tích đa dư lượng của năm mươi loại thuốc trừ sâu trong nước sông và nước thải

Springer Science and Business Media LLC - Tập 28 - Trang 66787-66803 - 2021
Paula Paíga1, Sara Sousa1, José Vera1, Luciana Bitencourt1,2, Joana Vieira3, Sandra Jorge3, Jaime Gabriel Silva4,5, Manuela Correia1, Valentina F. Domingues1, Cristina Delerue-Matos1
1REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Politécnico do Porto, Porto, Portugal
2Instituto Federal de Educação, Ciências e Tecnologia de Sergipe, Lagarto, Brazil
3Águas do Centro Litoral, SA, Grupo Águas de Portugal, ETA da Boavista, Coimbra, Portugal
4Águas de Santo André, Cerca da Água, Vila Nova de Santo André, Portugal
5Departamento de Engenharia Civil, Instituto Superior de Engenharia do Porto, Politécnico do Porto, Porto, Portugal

Tóm tắt

Ba đợt lấy mẫu đã được thực hiện tại sông Lis (Leiria, Bồ Đào Nha) vào tháng 2 năm 2018, tháng 11 năm 2018, và tháng 5 năm 2019. Nước sông và mẫu nước thải (nước vào và nước ra) của hai trạm xử lý nước thải đã được nghiên cứu. Tổng cộng, 25 mẫu đã được thu thập và 50 loại thuốc trừ sâu được giám sát, bao gồm các hợp chất organochlorine, triazine, pyrethroid và organophosphorus, trong số đó. Hầu hết các loại thuốc trừ sâu được phát hiện là thuốc diệt côn trùng và chủ yếu là organochlorine. Nồng độ thuốc trừ sâu từ 1,29 đến 2134 ng/L đã được phát hiện. Aldrin, γ-HCH và cypermethrin đã được phát hiện trong một số mẫu ở mức μg/L, với γ-HCH là thuốc trừ sâu được phát hiện thường xuyên nhất với nồng độ ở mức μg/L. Các loại thuốc trừ sâu có tỷ lệ phát hiện cao nhất là (i) cypermethrin, HCB, methoxychlor và ζ-HCH trong nước sông; (ii) isoproturon, cypermethrin, methoxychlor, pyrimethanil, γ-HCH, dieldrin, diuron, α-HCH và α-endosulfan trong nước thải; và (iii) diuron và isoproturon trong nước vào. Việc phát hiện các hợp chất organochlorine và các sản phẩm phân hủy của chúng là hậu quả của tính tồn tại của chúng trong môi trường, vì việc sử dụng của chúng đã bị cấm từ lâu tại Liên minh Châu Âu. Các loại thuốc trừ sâu được phân loại theo loại như herbicide, insecticide hoặc fungicide và việc phát hiện cũng như nồng độ cho mỗi loại được thảo luận theo điều kiện khí hậu. Chỉ số độc tính của thuốc trừ sâu đã được xác định trong các mẫu thu thập từ sông.

Từ khóa

#thuốc trừ sâu #nước sông #nước thải #phân tích đa dư lượng #organochlorine #pyrethroid #chỉ số độc tính

Tài liệu tham khảo

Abdolazim B, Nazari Z, Rabiee MH, Raeesi G, Oveisi MR, Sadeghi N, Jannat B (2013) The organochlorine pesticides residue levels in Karun river water. Jundishapur J Nat Pharm Prod 8:41–46. https://doi.org/10.5812/jjnpp.6783 Abrantes N, Pereira R, Gonçalves F (2010) Occurrence of pesticides in water, sediments, and fish tissues in a lake surrounded by agricultural lands: concerning risks to humans and ecological receptors. Water Air Soil Pollut 212:77–88. https://doi.org/10.1007/s11270-010-0323-2 Antonious GF, Byers ME (1997) Fate and movement of endosulfan under field conditions. Environ Toxicol Chem 16:644–649. https://doi.org/10.1002/etc.5620160407 ATSDR-Endosulfan (2015): Agency for Toxic Substances and Disease Registry. Toxicological profile for endosulfan. Chapter 6. Potential for Human Exposure. page 221-272. Available at: https://www.atsdr.cdc.gov/toxprofiles/tp41-c6.pdf (accessed 2 March 2020) Bala K, Geueke B, Miska M, Rentsch D, Poiger T, Dadhwa lM, Lal R, Holliger C, Kohler H (2012) Enzymatic conversion of ε-hexachlorocyclohexane and a heptachlorocyclohexane isomer, two neglected components of technical hexachlorocyclohexane. Environ Sci Technol 46:4051–4058. https://doi.org/10.1021/es204143x Barceló D, Hennion MC (1997): Techniques and instrumentation in analytical chemistry. trace determination of pesticides and their degradation products in water, 19. Elsevier Science B.V, Amsterdam, The Netherlands. Hardcover ISBN: 9780444818423, eBook ISBN: 9780080543123 Barrie LA, Gregor D, Hargrave B, Lake R, Muir D, Shearer R, Tracey B, Bidleman T (1992) Arctic contaminants: sources, occurrence and pathways. Sci Total Environ 122:1–74. https://doi.org/10.1016/0048-9697(92)90245-N Battaglin W, Fairchild J (2002) Potential toxicity of pesticides measured in midwestern streams to aquatic organisms. Water Sci Technol 45:95–102. https://doi.org/10.2166/wst.2002.0213 Cerrillo I, Granada A, López-Espinosa M-J, Olmos B, Jiménez M, Caño A, Olea N, Fátima Olea-Serrano M (2005) Endosulfan and its metabolites in fertile women, placenta, cord blood, and human milk. Environ Res 98:233–239. https://doi.org/10.1016/j.envres.2004.08.008 Covert SA, Shoda ME, Stackpoole SM, Stone WW (2020) Pesticide mixtures show potential toxicity to aquatic life in U.S. streams, water years 2013–2017. Sci Total Environ 745:141285. https://doi.org/10.1016/j.scitotenv.2020.141285 Cruzeiro C, Pardal MÂ, Rocha E, Rocha MJ (2015) Occurrence and seasonal loads of pesticides in surface water and suspended particulate matter from a wetland of worldwide interest—the Ria Formosa Lagoon, Portugal. Environ Monit Assess 187:669. https://doi.org/10.1007/s10661-015-4824-8 Cruzeiro C, Rocha E, Pardal MÂ, Rocha MJ (2016) Environmental assessment of pesticides in the Mondego River Estuary (Portugal). Mar Pollut Bull 103:240–246. https://doi.org/10.1016/j.marpolbul.2015.12.013 Cui S, Hough R, Yates K, Osprey M, Kerr C, Cooper P, Coull M, Zhang Z (2020) Effects of season and sediment-water exchange processes on the partitioning of pesticides in the catchment environment: implications for pesticides monitoring. Sci Total Environ 698:134228. https://doi.org/10.1016/j.scitotenv.2019.134228 Cumming H, Rücker C (2017) Octanol−water partition coefficient measurement by a simple 1HNMR method. ACS Omega 2:6244–6249. https://doi.org/10.1021/acsomega.7b01102 DL (1977) Decree Law. Decreto-Lei n° 152/97 de de 19 de Junho do Ministério do Ambiente e do Ordenamento do Território. DIÁRIO DA REPÚBLICA — I SÉRIE-A - N°139 — 19-6-1997, 2959-2968. Available at: https://dre.pt/application/conteudo/365343, Accessed date: 01 February 2021. DL (2015): Decree Law. Decreto- Lei n° 218/2015 de 7 de outubro do Ministério do Ambiente e do Ordenamento do Território. Diário Da República, 1a Série-N° 196, 196, 8667–8685. Available at: https://dre.pt/application/file/a/70476114, Accessed date: 09 February 2020 Drożdżyński D (2008) Studies on residues of pesticides used in rape plants protection in surface waters of intensively exploited arable lands in Wielkopolska province of Poland. Ann Agric Environ Med 15:231–235 EC (1998): COUNCIL DIRECTIVE 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. L 330. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31998L0083&from=EN, Accessed date: 04 February 2020), Official Journal of the European Communitie, pp. 32-54 EC (2000): DIRECTIVE 2000/60/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 October 2000 establishing a framework for Community action in the field of water policy. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32000L0060, Accessed date: 04 February 2020, Official Journal of the European Union, pp. 1-72 EC (2002): 2002/657/EC: Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results.2002/657/EC. Available at: https://op.europa.eu/en/publication-detail/-/publication/ed928116-a955-4a84-b10a-cf7a82bad858/language-en, Accessed date: 14 April 2020. In: European Commission (Hrsg.), pp. 8-36 EC (2013): DIRECTIVE 2013/39/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Available at: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:EN:PDF, Accessed date: 04 February 2020, Official Journal of the European Union, pp. 1-17 FAO (2020) APPENDIX 3-Fact sheets on pesticides. Available: http://www.fao.org/3/X2570E/X2570E07.htm, Accessed date: 11 April 2020 Ferencz L, Balog A (2010) A pesticide survey in soil, water and foodstuffs from Central Romania. Carpath J Earth Env 5:111–118 http://www.cjees.ro/viewTopic.php?topicId=80~. Corpus ID: 32012314 Fernandes VC, Domingues VF, Mateus N, Delerue-Matos C (2011) Organochlorine pesticide residues in strawberries from integrated pest management and organic farming. J Agric Food Chem 59:7582–7591. https://doi.org/10.1021/jf103899r Fujioka K, Casida JE (2007) Glutathione S-transferase conjugation of organophosphorus pesticides yields S-Phospho-, S-Aryl-, and S-alkylglutathione derivatives. Chem Res Toxicol 20:1211–1217. https://doi.org/10.1021/tx700133c Fytiano K, Pitarakis K, Bobola E (2007) Monitoring of N-methylcarbamate pesticides in the Pinios River (central Greece) by HPLC. Int J Environ Anal Chem 86:131–145. https://doi.org/10.1080/03067310500248171 Gros M, Rodríguez-Mozaz S, Barceló D (2012) Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J Chromatogr A 1248:104–121. https://doi.org/10.1016/j.chroma.2012.05.084 Guillossou R, Le Roux J, Mailler R, Vulliet E, Morlay C, Nauleau F, Gasperi J, Rocher V (2019) Organic micropollutants in a large wastewater treatment plant: what are the benefits of an advanced treatment by activated carbon adsorption in comparison to conventional treatment? Chemosphere 218:1050–1060. https://doi.org/10.1016/j.chemosphere.2018.11.182 Hoffman DJ, Rattner BA, Burton Jr GA, Cairns Jr J (2003): eds. Handbook of ecotoxicology (2nd ed.). Boca Raton: Lewis Publishers. ISBN 1-56670-546-0. OCLC 49952447 IPMA (2020) Instituto Português do Mar e da Atmosfera (Portuguese Institute of the Sea and the Atmosphere). Available at: https://www.ipma.pt/pt/, Accessed date: 10 April 2020 Jelic A, Gros M, Ginebreda A, Cespedes-Sánchez R, Ventura F, Petrovic M, Barcelo D (2011) Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res 45:1165–1176. https://doi.org/10.1016/j.watres.2010.11.010 Köck-Schulmeyer M, Villagrasa M, López de Alda M, Céspedes-Sánchez R, Ventura F, Barceló D (2013) Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Sci Total Environ 458-460:466–476. https://doi.org/10.1016/j.scitotenv.2013.04.010 Le TDH, Scharmüller A, Kattwinkel M, Kühne R, Schüürmann G, Schäfer RB (2017) Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments. Ecotoxicol Environ Saf 145:135–141. https://doi.org/10.1016/j.ecoenv.2017.07.027 Leonard AW, Hyne RV, Lim RP, Leigh KA, Le J, Beckett R (2001) Fate and toxicity of endosulfan in Namoi River water and bottom sediment. J Environ Qual 30:750–759. https://doi.org/10.2134/jeq2001.303750x Linden J (2013): Insect control on pig farms. Available at: https://thepigsite.com/articles/insect-control-on-pig-farms, Acessed date: 12 March 2020 Lockhart WL, Wagemann R, Tracey B, Sutherland D, Thomas DJ (1992) Presence and implications of chemical contaminants in the fresh waters of the Canadian Arctic. Sci Total Environ 122:165–245. https://doi.org/10.1016/0048-9697(92)90248-Q Mansilha C, Melo A, Ferreira IMPLVO, Pinho O, Domingues V, Pinho C, Gameiro P (2011) Groundwater from infiltration galleries used for small public water supply systems: contamination with pesticides and endocrine disruptors. Bull Environ Contam Toxicol 87:312–318. https://doi.org/10.1007/s00128-011-0337-5 Margot J, Rossi L, Barry DA, Holliger C (2015) A review of the fate of micropollutants in wastewater treatment plants. Wiley Interdiscip Rev Water 2:457–487. https://doi.org/10.1002/wat2.1090 Masiá A, Campo J, Vázquez-Roig P, Blasco C, Picó Y (2013) Screening of currently used pesticides in water, sediments and biota of the Guadalquivir River Basin (Spain). J Hazard Mater 263:95–104. https://doi.org/10.1016/j.jhazmat.2013.09.035 Mekonnen TF, Panne U, Koch M (2019) Glucosylation and glutathione conjugation of chlorpyrifos and fluopyram metabolites using electrochemistry/mass spectrometry. Molecules 24:898. https://doi.org/10.3390/molecules24050898 Münze R, Hannemann C, Orlinskiy P, Gunold R, Paschke A, Foit K, Becker J, Kaske O, Paulsson E, Peterson M, Jernstedt H, Kreuger J, Schüürmann G, Liess M (2017) Pesticides from wastewater treatment plant effluents affect invertebrate communities. Sci Total Environ 599-600:387–399. https://doi.org/10.1016/j.scitotenv.2017.03.008 NATA (2013): Guidelines for the validation and verification of quantitative and qualitative test methods. Technical Note 17. National Association of Testing Authorities, Australia. Available at: https://www.nata.com.au/phocadownload/gen-accreditation-guidance/Validation-and-Verification-of-Quantitative-and-Qualitative-Test-Methods.pdf, acessed 01 January 2021 Nowell LH, Norman JE, Moran PW, Martin JD, Stone WW (2014) Pesticide Toxicity Index—a tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms. Sci Total Environ 476–477:144–157. https://doi.org/10.1016/j.scitotenv.2013.12.088 Paíga P, Santos LHMLM, Ramos S, Jorge S, Silva JG, Delerue-Matos C (2016) Presence of pharmaceuticals in the Lis river (Portugal): sources, fate and seasonal variation. Sci Total Environ 573:164–177. https://doi.org/10.1016/j.scitotenv.2016.08.089 Paíga P, Santos LHMLM, Delerue-Matos C (2017) Development of a multi-residue method for the determination of human and veterinary pharmaceuticals and some of their metabolites in aqueous environmental matrices by SPE-UHPLC–MS/MS. J Pharm Biomed Anal 135:75–86. https://doi.org/10.1016/j.jpba.2016.12.013 Paíga P, Correia M, Fernandes MJ, Silva A, Carvalho M, Vieira J, Jorge S, Silva JG, Freire C, Delerue-Matos C (2019) Assessment of 83 pharmaceuticals in WWTP influent and effluent samples by UHPLC-MS/MS: hourly variation. Sci Total Environ 648:582–600. https://doi.org/10.1016/j.scitotenv.2018.08.129 Palma P, Köck-Schulmeyer M, Alvarenga P, Ledo L, Barbosa IR, López de Alda M, Barceló D (2014) Risk assessment of pesticides detected in surface water of the Alqueva reservoir (Guadiana basin, southern of Portugal). Sci Total Environ 488-489:208–219. https://doi.org/10.1016/j.scitotenv.2014.04.088 Pitarch E, Medina C, Portolés T, López FJ, Hernández F (2007) Determination of priority organic micro-pollutants in water by gas chromatography coupled to triple quadrupole mass spectrometry. Anal Chim Acta 583:246–258. https://doi.org/10.1016/j.aca.2006.10.012 Ramesh A, Tanabe S, Iwata H, Tatsukawa R, Subramanian AN, Mohan D, Venugopalan VK (1990) Seasonal variation of persistent organochlorine insecticide residues in Vellar River waters in Tamil Nadu, South India. Environ Pollut 67:289–304. https://doi.org/10.1016/0269-7491(90)90067-M Rao DMR, Murty AS (1980) Persistence of endosulfan in soils. J Agric Food Chem 28:1099–1101. https://doi.org/10.1021/jf60232a012 Rashid SS, Liu Y-Q (2020) Assessing environmental impacts of large centralized wastewater treatment plants with combined or separate sewer systems in dry/wet seasons by using LCA. Environ Sci Pollut Res 27:15674–15690. https://doi.org/10.1007/s11356-020-08038-2 Reungoat J, Macova M, Escher BI, Carswell S, Mueller JF, Keller J (2010) Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration. Water Res 44:625–637. https://doi.org/10.1016/j.watres.2009.09.048 Ritter L, Solomon KR, Forget J, Stemeroff M, O’Leary C (1995) A review of selected persistent organic pollutants: DDT, Aldrin, Dieldrin, Endrin, Chlordane, Heptachlor, Hexachlorobenzene, Mïrex, Toxaphene, Polychlorinated biphenyls, Dioxins, and Furans. PCS/95.39. A formal publication of the World Health Organization (WHO). Available at: https://www.who.int/ipcs/assessment/en/pcs953920040513.pdf, Acessed date: 01 February 2020.1-62. Sánchez-González S, Pose-Juan E, Herrero-Hernández E, Álvarez-Martín A, Sánchez-Martín MJ, Rodríguez-Cruz S (2013) Pesticide residues in groundwaters and soils of agricultural areas in the Águeda River Basin from Spain and Portugal. Int J Environ Anal Chem 93:1585–1601. https://doi.org/10.1080/03067319.2013.814122 Şengül Ü (2016) Comparing determination methods of detection and quantification limits for aflatoxin analysis in hazelnut. J Food Drug Anal 24:56–62. https://doi.org/10.1016/j.jfda.2015.04.009 Singh SN (2016) Microbe-induced degradation of pesticides. Springer International Publishing.107. https://doi.org/10.1007/978-3-319-45156-5 Soares AFS, Leão MMD, de Faria VHF, da Costa MCM, Moura ACM, Ramos VDV, Neto MRV, da Cost aP (2013) Occurrence of pesticides from coffee crops in surface water. Ambi-Agua 8: 62-72. https://doi.org/10.4136/ambi-agua.1053 Spahr S, Teixidó M, Sedlak DL, Luthy RG (2020) Hydrophilic trace organic contaminants in urban stormwater: occurrence, toxicological relevance, and the need to enhance green stormwater infrastructure. Environ Sci-Wat Res 6:15–44. https://doi.org/10.1039/C9EW00674E Stamatis N, Hela D, Konstantinou I (2010) Pesticide inputs from the sewage treatment plant of Agrinio to River Acheloos, western Greece: occurrence and removal. Water Sci Technol 62(5):1098–1105. https://doi.org/10.2166/wst.2010.932 Stenerson KK, Buchanan MD, Prevent GC (2020) Inlet Problems BEFORE They Cost You Time and Money. Reporter US, Volume 27.3. Available at: https://www.sigmaaldrich.com/technical-documents/articles/reporter-us/gc-inlet-problem-prevention.html, Acessed date: 14 April 2020, Reporter US Thomas DJ, Tracey B, Marshall H, Norstrom RJ (1992) Arctic terrestrial ecosystem contamination. Sci Total Environ 122:135–164. https://doi.org/10.1016/0048-9697(92)90247-P USEPA (2012): US Environmental Protection Agency. Ecological Structure Activity Relationships (ECOSAR) Predictive Model v1.11, Available at: https://goo.gl/xBM2VN Wheeler W (2002): Pesticides in Agriculture and the Environment. 1st Edition. . CRC Press, New York, USA. ISBN-10 : 0824708091, ISBN-13 : 978-0824708092 Zhang P, Song JM, Yuan HM (2009) Persistent organic pollutants residues in the sediments and mollusks from the Bohai Sea coastal areas, North China: an overview. Environ Int 35:632–646. https://doi.org/10.1016/j.envint.2008.09.014 Zhou Y, Meng J, Zhang M, Chen S, He B, Zhao H, Li Q, Zhang S, Wang T (2019) Which type of pollutants need to be controlled with priority in wastewater treatment plants: traditional or emerging pollutants? Environ Int 131:104982. https://doi.org/10.1016/j.envint.2019.104982