Multi‐precision Laplace transform inversion

International Journal for Numerical Methods in Engineering - Tập 60 Số 5 - Trang 979-993 - 2004
Joseph Abate1, Peter P. Valkó2
1900 Hammond Road, Ridgewood, NJ 07450‐2908, U.S.A.
23116 TAMU, College Station, TX, 77843, U.S.A.

Tóm tắt

AbstractFor the numerical inversion of Laplace transforms we suggest to use multi‐precision computing with the level of precision determined by the algorithm. We present two such procedures. The Gaver–Wynn–Rho (GWR) algorithm is based on a special sequence acceleration of the Gaver functionals and requires the evaluation of the transform only on the real line. The fixed Talbot (FT) method is based on the deformation of the contour of the Bromwich inversion integral and requires complex arithmetic. Both GWR and FT have only one free parameter: M, which is the number of terms in the summation. Both algorithms provide increasing accuracy as M increases and can be realized in a few lines using current Computer Algebra Systems. Copyright © 2004 John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

10.1016/0021-9991(79)90025-1

10.1002/nme.1620181207

10.1145/155743.155788

ValkóPP VojtaBL. The List.2001;http://pumpjack.tamu.edu/∼valko

10.1080/14786443508561445

10.1007/BF01158520

10.1145/326147.326148

Sakurai T, 2004, Numerical inversion of the Laplace transform of functions with discontinuities, Queueing Systems

10.1017/S0305004100029078

10.1287/ijoc.8.4.413

10.1137/S1064827596312432

10.1287/opre.14.3.444

10.1093/imamat/23.1.97

10.1007/978-1-4684-9283-5

Wimp J, 1981, Sequence Transformations and Their Applications

10.1145/361953.361969

10.1016/j.camwa.2002.10.017

Mathematica Information Center http://library.wolfram.com/database/MathSource/4738/

10.1145/78928.78932

10.1080/00207169308804220

10.1080/00207160008804916

10.1007/978-3-642-65690-3