Multi-population Mean Field Games systems with Neumann boundary conditions

Journal de Mathématiques Pures et Appliquées - Tập 103 - Trang 1294-1315 - 2015
Marco Cirant1
1Dipartimento di Matematica “F. Enriques”, Università di Milano, Via C. Saldini, 50, 20133 Milano, Italy

Tài liệu tham khảo

Achdou, 2013, Finite difference methods for mean field games, 1 Achdou, 2010, Mean field games: numerical methods, SIAM J. Numer. Anal., 48, 1136, 10.1137/090758477 Arisawa, 1998, On ergodic stochastic control, Commun. Partial Differ. Equ., 23, 2187, 10.1080/03605309808821413 Bardi, 1999, On the strong maximum principle for fully nonlinear degenerate elliptic equations, Arch. Math. (Basel), 73, 276, 10.1007/s000130050399 Barles, 2005, On the boundary ergodic problem for fully nonlinear equations in bounded domains with general nonlinear Neumann boundary conditions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 22, 521, 10.1016/j.anihpc.2004.09.001 Bensoussan, 1988, Perturbation Methods in Optimal Control Bensoussan, 2013, Mean Field Games and Mean Field Type Control Theory, 10.1007/978-1-4614-8508-7 Cardaliaguet Cardaliaguet, 2012, Long time average of mean field games, Netw. Heterog. Media, 7, 279, 10.3934/nhm.2012.7.279 Crandall, 1992, User's guide to viscosity solutions of second order partial differential equations, Bull., New Ser., Am. Math. Soc., 27, 1, 10.1090/S0273-0979-1992-00266-5 Feleqi, 2013, The derivation of ergodic mean field game equations for several populations of players, Dyn. Games Appl., 3, 523, 10.1007/s13235-013-0088-5 Gilbarg, 2001, Elliptic Partial Differential Equations of Second Order, 10.1007/978-3-642-61798-0 Gomes, 2014, On the existence of classical solutions for stationary extended mean field games, Nonlinear Anal., 99, 49, 10.1016/j.na.2013.12.016 Gomes, 2012, A-priori estimates for stationary mean-field games, Netw. Heterog. Media, 7, 303, 10.3934/nhm.2012.7.303 Huang, 2009, Large-population LQG games involving a major player: the Nash certainty equivalence principle, SIAM J. Control Optim., 48, 3318, 10.1137/080735370 Huang, 2006, Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6, 221, 10.4310/CIS.2006.v6.n3.a5 Lachapelle, 2011, On a mean field game approach modeling congestion and aversion in pedestrian crowds, Transp. Res., Part B, Methodol., 45, 1572, 10.1016/j.trb.2011.07.011 Lasry, 2006, Jeux à champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343, 619, 10.1016/j.crma.2006.09.019 Lasry, 2006, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343, 679, 10.1016/j.crma.2006.09.018 Lasry, 2007, Mean field games, Jpn. J. Math., 2, 229, 10.1007/s11537-007-0657-8 Lions Lions, 1985, Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre, J. Anal. Math., 45, 234, 10.1007/BF02792551 Nirenberg, 1959, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa (3), 13, 115 Nourian, 2013, ϵ-Nash mean field game theory for nonlinear stochastic dynamical systems with major and minor agents, SIAM J. Control Optim., 51, 3302, 10.1137/120889496 Schechter, 1963, On Lp estimates and regularity. I, Am. J. Math., 85, 1, 10.2307/2373179