Multi-population Mean Field Games systems with Neumann boundary conditions
Tài liệu tham khảo
Achdou, 2013, Finite difference methods for mean field games, 1
Achdou, 2010, Mean field games: numerical methods, SIAM J. Numer. Anal., 48, 1136, 10.1137/090758477
Arisawa, 1998, On ergodic stochastic control, Commun. Partial Differ. Equ., 23, 2187, 10.1080/03605309808821413
Bardi, 1999, On the strong maximum principle for fully nonlinear degenerate elliptic equations, Arch. Math. (Basel), 73, 276, 10.1007/s000130050399
Barles, 2005, On the boundary ergodic problem for fully nonlinear equations in bounded domains with general nonlinear Neumann boundary conditions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 22, 521, 10.1016/j.anihpc.2004.09.001
Bensoussan, 1988, Perturbation Methods in Optimal Control
Bensoussan, 2013, Mean Field Games and Mean Field Type Control Theory, 10.1007/978-1-4614-8508-7
Cardaliaguet
Cardaliaguet, 2012, Long time average of mean field games, Netw. Heterog. Media, 7, 279, 10.3934/nhm.2012.7.279
Crandall, 1992, User's guide to viscosity solutions of second order partial differential equations, Bull., New Ser., Am. Math. Soc., 27, 1, 10.1090/S0273-0979-1992-00266-5
Feleqi, 2013, The derivation of ergodic mean field game equations for several populations of players, Dyn. Games Appl., 3, 523, 10.1007/s13235-013-0088-5
Gilbarg, 2001, Elliptic Partial Differential Equations of Second Order, 10.1007/978-3-642-61798-0
Gomes, 2014, On the existence of classical solutions for stationary extended mean field games, Nonlinear Anal., 99, 49, 10.1016/j.na.2013.12.016
Gomes, 2012, A-priori estimates for stationary mean-field games, Netw. Heterog. Media, 7, 303, 10.3934/nhm.2012.7.303
Huang, 2009, Large-population LQG games involving a major player: the Nash certainty equivalence principle, SIAM J. Control Optim., 48, 3318, 10.1137/080735370
Huang, 2006, Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6, 221, 10.4310/CIS.2006.v6.n3.a5
Lachapelle, 2011, On a mean field game approach modeling congestion and aversion in pedestrian crowds, Transp. Res., Part B, Methodol., 45, 1572, 10.1016/j.trb.2011.07.011
Lasry, 2006, Jeux à champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343, 619, 10.1016/j.crma.2006.09.019
Lasry, 2006, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343, 679, 10.1016/j.crma.2006.09.018
Lasry, 2007, Mean field games, Jpn. J. Math., 2, 229, 10.1007/s11537-007-0657-8
Lions
Lions, 1985, Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre, J. Anal. Math., 45, 234, 10.1007/BF02792551
Nirenberg, 1959, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa (3), 13, 115
Nourian, 2013, ϵ-Nash mean field game theory for nonlinear stochastic dynamical systems with major and minor agents, SIAM J. Control Optim., 51, 3302, 10.1137/120889496
Schechter, 1963, On Lp estimates and regularity. I, Am. J. Math., 85, 1, 10.2307/2373179