Multi-parameters approach to assessment of soil liquefaction vulnerability in wetland areas of Lagos, Southwestern, Nigeria
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ansal A, Akinci A, Cultrera G, Erdik M, Pessina V, Tönük G, Ameri G. Loss estimation in Istanbul based on deterministic earthquake scenarios of the Marmara Sea region (Turkey). Soil Dyn Earthq Eng. 2009;29(4):699–709. https://doi.org/10.1016/j.soildyn.2008.07.006.
Akkaya İ. Availability of seismic vulnerability index (K g) in the assessment of building damage in Van, Eastern Turkey. Earthq Eng Eng Vib. 2020;19:189–204. https://doi.org/10.1007/s11803-020-0556-z.
Housner, G.W. (1985) Liquefaction of Soils during Earthquakes. Report by the Committee on Earthquake Engineering, Commission on Engineering and Technical Systems, National Research Council. National Academy Press.
Thevanayagam S, Martin GR. Liquefaction in silty soils screening and remediation issues. Soil Dyn Earthquake Eng. 2002;22:1035–42. https://doi.org/10.1016/S0267-7261(02)00128-8.
Porcino DD, Tomasello G. Shear wave velocity-based evaluation of liquefaction resistance for calcareous sands of different origin. Soil Dyn Earthq Eng. 2019;122:235–47. https://doi.org/10.1016/j.soildyn.2019.03.019.
Marcusson WF. Definition of terms related to liquefaction. J Geotech Eng Div. 1978;104:1197–2000. https://doi.org/10.1061/AJGEB6.0000688.
Toprak S, Holzer T. Liquefaction potential index: field assessment. J Geotech Geoenviron Eng. 2003;129:315–22. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(315).
Ayolabi EA, Enoh IJ, Folorunso AF. Engineering site characterization using 2-D and 3-D electrical resistivity tomography. Earth Sci Rev. 2013;2:133–42. https://doi.org/10.5539/esr.v2n1p133.
Adeoti L, Ojo AO, Adegbola RB, Fasakin OO. Geoelectric assessment as an aid to geotechnical investigation at a proposed residential development site in Ilubirin, Lagos. Southwestern Nigeria Arabian J Geosci. 2016;95:338. https://doi.org/10.1007/s12517-016-2334-9.
Adiat KAN, Akinlalu AA, Adegoroye AA. Evaluation of road failure vulnerability section through integrated geophysical and geotechnical studies. NRIAG J Astron Geophys. 2017;6:244–55. https://doi.org/10.1016/j.nrjag.2017.04.006.
Uwaezuoke CC, Ishola KS, Ayolabi EA. Electrical resistivity imaging and multichannel analysis of surface waves for mapping the subsurface of a wetland area of Lagos, Nigeria. NRIAG J Astron Geophys. 2021;10(1):300–19. https://doi.org/10.1080/20909977.2021.1927427.
Youd TL, Idriss IM, Andrus RD, et al. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotech Geoenviron Eng ASCE. 2001;1274:297–313.
Rahman MZ, Siddiqua S. Evaluation of liquefaction-resistance of soils using standard penetration test, cone penetration test, and shear-wave velocity data for Dhaka, Chittagong, and Sylhet cities in Bangladesh. Environ Earth Sci. 2017;76:207. https://doi.org/10.1007/s12665-017-6533-9.
El Hilali M, Timoulali Y, Benyounes T, Ahniche M, El Bardai R, Yattara S. Earthquake-induced liquefaction in the coastal zone, Case of Martil city, Morocco. E3S Web of Conferences. 2021; 298, 01002 (2021). https://doi.org/10.1051/e3sconf/202129801002
Ajakaiye DE. Earthquakes – What are they? In Proceedings of the National Seminar on earthquakes in Nigeria (Ed.) Ajakaiye D. E; Ojo S. B. and Daniyan M. A.5 – 42. 1989.
Eze CL. Tsunami: facts and figures for Nigerian Coastal Dwellers and Tourists. Transparent Earth Nigeria Limited. 2007.
Akpan UO, Yakubu TA. A review of earthquake occurrences and observation in Nigeria. Earthq Sci. 2010;23:289–94. https://doi.org/10.1007/s11589-010-0725-7.
Adepelumi AA, Olorunfemi MO. Engineering geological and geophysical investigation of the reclaimed Lekki Peninsula, Lagos. South West Nigeria. Bull Eng Geol Env. 2000;58:125–32. https://doi.org/10.1007/s100640050006.
Osagie EO. Seismic activity in Nigeria. The Pac Jour Sci & Tech. 2008;9(2):1–6.
Akpan OU, Isogun MA, Yakubu TA, Adepelumi AA, Okereke CS, Oniku AS, Oden MI. An evaluation of the 11th september, 2009 earthquake and its implication for understanding the seismotectonics of South Western Nigeria. Open J Geol. 2014;4:542–50.
Adepelumi AA, Yakubu TA, Alao OA, Adebayo AY. Site dependence earthquake spectra attenuation modeling: Nigerian case study. Int J Geosci. 2011;2:549–61. https://doi.org/10.4236/ijg.2011.24058.
Mignan A, Landtwing D, Kästli P, et al. Induced seismicity risk analysis of the 2006 Basel, Switzerland, enhanced geothermal system project: Influence of uncertainties on risk mitigation. Geothermics. 2015;53:133–46. https://doi.org/10.1016/j.geothermics.2014.05.007.
Samaila NK, Likkason OK. Role of equatorial fracture zones on fluid migration across the South Atlantic Margins. J Earth Sci Climatic Change. 2013. https://doi.org/10.4172/2157-7617.S12-004.
Ajama OD, Awoyemi MO, Arogundade AB, Dasho OA, Falade SC, Hammed OS, Shode OH. Deep crustal network of the Equatorial Atlantic fracture zones in southern Nigeria. Results Geophys Sci. 2021;8: 100027.
Blundell DJ. Active faults in West Africa. Earth Planet Sci Lett. 1976;31:287–90. https://doi.org/10.1016/0012-821X(76)90221-1.
Ajakaiye DE, Daniyan MA, Ojo SB, et al. The july 28, 1984 southwestern Nigeria earthquake and its implications for tectonics and evolution of Nigeria. J Geodyn. 1987;7:205–14. https://doi.org/10.1016/0264-3707(87)90005-6.
Lee DH, Ku CS, Yuan H. A study of the liquefaction risk potential at Yuanlin. Taiwan Eng Geol. 2004;71:97–117. https://doi.org/10.1016/S0013-7952(03)00128-5.
Ulamis K, Kilic R. Liquefaction potential evaluation of the quaternary alluvium, Western Ankara (Turkey). Environ Earth Sci. 2012;67:945–58. https://doi.org/10.1007/s12665-012-1526-1.
Obaje NG. Geology and mineral resources of Nigeria. Berlin Heidelberg: Springer-Verlag; 2009. p. 219.
Oyedele KF, Meshida EA, Obidike CC. Assessment of coastal soil corrosivity using resistivity tomography at Lekki. Lagos, Nigeria. Int J Sci Adv Technol. 2012;2:77–81.
Jones HA, and Hockey RD. The geology of part of South-Western Nigeria. Geological Survey of Nigeria Bulleting. 31; 1964.
Adeoti L, Ojo AO, Adegbola RB, Fasakin OO. Geoelectric assessment as an aid to geotechnical investigation at a proposed residential development site in Ilubirin, Lagos, Southwestern Nigeria. Arabian J Geosci. 2016;9:1–10. https://doi.org/10.1007/s12517-016-2334-9.
Omatsola L, Adegoke OS. Tectonic evolution and cretaceous stratigraphy of Dahomey basin. J Mining Geol. 1981;18:130–7.
Xia J, Miller RD, Park CB. Estimation of near-surface shear-wave velocity by inversion of Rayleigh wave. Geophysics. 1999;64:691–700.
Boulanger RW, Idris IM. CPT and SPT based liquefaction triggering procedures. Report UCD/CGM-14/01. Davis CA: University of California; 2004.
Idriss, I.M., and Boulanger, R.W. (2004). Semi-empirical procedures for evaluating liquefaction potential during earthquakes. In: 11th International conference on soil dynamics and earthquake engineering, and 3rd international conference on earthquake geotechnical engineering, Berkeley, 32–56, https://doi.org/10.1016/j.soildyn.2004.11.023.
Cubrinovski M, Ishihara K. Empirical correlation between SPT N-value and relative density for sandy soil. Soil Foundation. 1999;39:61–71. https://doi.org/10.3208/sandf.39.5_61.
Terzaghi K, Peck RB. Soil mechanics in engineering practice. Wiley; 1948.
Alaneme KK, Okotete EA. Critical evaluation of seismic activities in Africa and curtailment policies—a review. Geoenviron Disasters. 2018;5:24. https://doi.org/10.1186/s40677-018-0116-2.
Thomas JE, George NJ, Ekanem AM, et al. Preliminary investigation of earth tremors using total electron content: a case study in parts of Nigeria. NRIAG J Astron Geophys. 2020;9:220–5. https://doi.org/10.1080/20909977.2020.1723866.
Hayati H, Andrus RD. Liquefaction potential map of Charleston, South Carolina based on the 1886 earthquake. J Geotech Geoenviron Eng. 2008;134:815–28. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:6(815).
Ulusay R, Kuru T. 1998 Adana-Ceyhan (Turkey) earthquake and a preliminary microzonation based on liquefaction potential for Ceyhan town. Nat Hazards. 2004;32:59–88. https://doi.org/10.1023/B:NHAZ.0000026790.71304.32.
Iwasaki T. Soil liquefaction studies in Japan: state-of-the-Art. Soil Dyn Earthq Eng. 1986;5:2–70. https://doi.org/10.1016/0267-7261(86)90024-2.
Ishola KS, Amu B, Adeoti L. Evaluation of near-surface conditions for engineering site characterization using geophysical and geotechnical methods in Lagos, Southwestern Nigeria. NRIAG J Astron Geophys. 2022;11:237–56. https://doi.org/10.1080/20909977.2022.2075160.
Adegbola RB, Ayolabi EA, Allo W. Subsurface characterization using seismic refraction and surface wave methods: a case of Lagos state university, Ojo, Lagos state. Arab J Geosci. 2012. https://doi.org/10.1007/s12517-102-0784-2.
Kayen R, Moss R, Thompson, et al. Shearwave velocity–based probabilistic and deterministic assessment of seismic soil liquefaction potential. J Geotech Geoenviron Eng. 2013;139:407–19. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000743.
Robertson PK. Evaluation of flow liquefaction and liquefied strength using the cone penetration test. J Geotech Geoenviron Eng. 2009;136:842–53. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000286.
Maurer BW, Green RA, Cubrinovski M, Bradley BA. Evaluation of the liquefaction potential index for assessing liquefaction hazard in Christchurch, New Zealand. J Geotech Geoenviron Eng. 2014;140:04014032. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001117.