Multi-objective workflow scheduling in Amazon EC2

Springer Science and Business Media LLC - Tập 17 Số 2 - Trang 169-189 - 2014
Juan J. Durillo1, Radu Prodan1
1University of Innsbruck, Innsbruck, Tirol, Austria

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alexandru, I., Ostermann, S., Yigitbasi, M., Prodan, R., Fahringer, T., Epema, D.: Performance analysis of cloud computing services for many-tasks scientific computing. IEEE Trans. Parallel Distrib. Syst. 22(6), 931–945 (2010)

Assayad, I., Girault, A., Kalla, H.: A bi-criteria scheduling heuristics for distributed embedded systems under reliability and real-time constraints. In: International Conference on Dependable Systems and Networks (DSN’04), Firenze, Italy. IEEE Press, New York (2003)

Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J.: Wien2k: an augmented plane wave plus local orbitals program for calculating crystal properties. Tech. rep., Institute of Physical and Theoretical Chemistry, TU Vienna (2001)

Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

Canon, L.C., Emmanuel, E.: MO-Greedy: an extended beam-search approach for solving a multi-criteria scheduling problem on heterogeneous machines. In: International Heterogeneity in Computing (2011)

Coello, C.A.C., Lamont, G.B., Van Veldhuisen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, Berlin (2007)

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2000)

Durillo, J., Fard, H., Prodan, R.: Moheft: a multi-objective lilst-based method for workflow scheduling. In: 4th IEEE International Conference on Cloud Computing Technology and Science (2012)

Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimization. Adv. Eng. Softw. 42, 760–771 (2011)

Fard, H., Prodan, R., Barrionuevo, J., Fahringer, T.: A multi-objective approach for workflow scheduling in heterogeneous environments. In: 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 300–309 (2012). doi: 10.1109/CCGrid.2012.114

Garg, R., Singh, A.K.: Reference point based multi-objective optimization to workflow grid scheduling. Int. J. Appl. Evol. Comput. 3(1), 80–99 (2012)

Garg, S.K., Buyya, R., Siegel, H.J.: Scheduling parallel applications on utility grids: time and cost trade-off management. In: Proceedings of the Thirty-Second Australasian Conference on Computer Science (ACSC ’09), Darlinghurst, Australia, vol. 91, pp. 151–160. Australian Computer Society, Sydney (2009)

Hakem, M., Butelle, F.: Reliability and scheduling on systems subject to failures. In: Proceedings of the 2007 International Conference on Parallel Processing (ICPP ’07), p. 38. IEEE Comput. Soc., Washington (2007)

Ilavarsan, E., Thambidurai, P.: Low complexity performance effective task scheduling algorithm for heterogeneous computing environments. J. Comput. Sci. 3(2), 94–103 (2007)

Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y., Albi, E.G.T., Zomaya, A.Y., Tuyttens, D.: A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for cloud computing systems. J. Parallel Distrib. Comput. 71, 1497–1508 (2011)

Plachetka, T.: POVRAY—persistence of vision parallel raytracer. In: Proceedings of Computer Graphics International ’98, pp. 123–129 (1998)

Sakellariou, R., Zhao, H., Tsiakkouri, E., Dikaiakos, M.D.: Scheduling workflows with budget constraints. In: Gorlatch, S., Danelutto, M. (eds.) Integrated Research in Grid Computing. CoreGrid Series. Springer, Berlin (2007)

Singh, D., Garg, R.: A robust multi-objective optimization to workflow scheduling for dynamic grid. In: Proceedings of the International Conference on Advances in Computing and Artificial Intelligence (ACAI ’11), pp. 183–188. ACM, New York (2011)

Singh, M.P., Vouk, M.A.: Scientific Workflows: Scientific Computing Meets Transactional Workflows (1996)

Talukder, A.K.M.K.A., Kirley, M., Buyya, R.: Multiobjective differential evolution for scheduling workflow applications on global grids. Evolution 21(13), 1742–1756 (2009)

Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M.: Workflows for e-Science: Scientific Workflows for Grids. Springer, New York (2006)

Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002)

Ullman, J.: Np-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–393 (1975)

Yu, J., Buyya, R., Ramamohanarao, K.: Workflow scheduling algorithms for grid computing. In: Xhafa, F., Abraham, A. (eds.) Metaheuristics for Scheduling in Distributed Computing Environments, pp. 109–153. Springer, Berlin (2008)

Yu, J., Kirley, M., Buyya, R.: Multi-objective planning for workflow execution on grids. In: Proceedings of the 8th IEEE/ACM International Conference on Grid Computing (GRID ’07), pp. 10–17. IEEE Comput. Soc., Washington (2007)

Zeng, J.t., Xia, J.w., Li, J.z., Li, M.h.: Multi-objective optimal grid workflow scheduling with qos constraints. In: Cao, B., Li, T.F., Zhang, C.Y. (eds.) Fuzzy Information and Engineering, Volume 2. Advances in Intelligent and Soft Computing, vol. 62, pp. 839–847. Springer, Berlin (2009)

Zitzler, E., Laumanns, M., Thiele, L.: Spea2: improving the strength pareto evolutionary algorithm. Tech. rep. 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)