Multi-objective optimization of spatial sampling
Tài liệu tham khảo
Aarts, 1989
Anderson, 2013, Lightweight unmanned aerial vehicles will revolutionize spatial ecology, Front. Ecol. Environ., 11, 138, 10.1890/120150
Babel, 2013, Three-dimensional route planning for unmanned aerial vehicles in a risk environment, J. Intell. Robot. Syst., 71, 255, 10.1007/s10846-012-9773-7
Ballari, 2012, Value of information and mobility constraints for sampling with mobile sensors, Comput. Geosci., 49, 102, 10.1016/j.cageo.2012.07.005
Bandyopadhyay, 2013
Bandyopadhyay, 2008, A simulated annealing-based multiobjective optimization algorithm: AMOSA, IEEE Trans. Evol. Comput., 12, 269, 10.1109/TEVC.2007.900837
Beckett, 1981, Logistics of agricultural extension — Foreword and Part I: The component parts of a logistic model, Agric. Administ., 8, 177
Boer, 2002, Optimization of a monitoring network for sulfur dioxide, J. Environ. Qual., 31, 121, 10.2134/jeq2002.1210
Brus, 2007, Optimization of sample patterns for universal kriging of environmental variables, Geoderma, 138, 86, 10.1016/j.geoderma.2006.10.016
Cares, 2016
Cressie, 1993
Das, 1997, A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems, Struct. Optim., 14, 63, 10.1007/BF01197559
Deb, 2014, An integrated approach to automated innovization for discovering useful design principles: case studies from engineering, Appl. Soft Comput., 15, 42, 10.1016/j.asoc.2013.10.011
De Gruijter, 2006
Faye, 2016, A toolbox for studying thermal heterogeneity across spatial scales: from unmanned aerial vehicle imagery to landscape metrics, Methods Ecol. Evol., 7, 437, 10.1111/2041-210X.12488
Hahsler, 2007, TSP - Infrastructure for the traveling salesperson problem, J. Stat. Softw., 23, 10.18637/jss.v023.i02
Hermoso, 2015, Prioritizing catchment rehabilitation for multi objective management: an application from SE-Queensland, Australia, Ecol. Modell., 316, 168, 10.1016/j.ecolmodel.2015.08.017
Kirkpatrick, 1983, Optimisation by simulated annealing, Science, 220, 671, 10.1126/science.220.4598.671
Lark, 2002, Optimized spatial sampling of soil for estimation of the variogram by maximum likelihood, Geoderma, 105, 49, 10.1016/S0016-7061(01)00092-1
Lark, 2011, Spatially nested sampling schemes for spatial variance components: scope for their optimization, Comput. Geosci., 37, 1633, 10.1016/j.cageo.2010.12.010
Lark, 2015, The implicit loss function for errors in soil information, Geoderma, 251-252, 24, 10.1016/j.geoderma.2015.03.014
Marchant, 2012
Marchant, 2007, Optimized sample schemes for geostatistical surveys, Math. Geol., 39, 113, 10.1007/s11004-006-9069-1
Marchant, 2013, Optimized multi-phase sampling for soil remediation surveys, Spat. Stat., 4, 1, 10.1016/j.spasta.2012.11.001
Martins, 2015, Multi-objective optimization of analog integrated circuit placement hierarchy in absolute coordinates, Expert Syst. Appl., 42, 9137, 10.1016/j.eswa.2015.08.020
McShane, 2016, Comparing and combining terrestrial laser scanning with ground-and UAV-based imaging for national-level assessment of soil erosion, Geophys. Res. Abstr., 18, 5576
Melles, 2011, Optimizing the spatial pattern of networks for monitoring radioactive releases, Comput. Geosci., 37, 280, 10.1016/j.cageo.2010.04.007
Othman, 2012, Wireless sensor network applications: a study in environmental monitoring system, Procedia Eng., 41, 1204, 10.1016/j.proeng.2012.07.302
R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
Shaw, 2016, Characterising the within-field scale spatial variation of nitrogen in a grassland soil to inform the efficient design of in-situ nitrogen sensor networks for precision agriculture, Agricult. Ecosys. Environ., 230, 294, 10.1016/j.agee.2016.06.004
Stein, 1999
van Groenigen, 1998, Constrained optimization of spatial sampling using continuous simulated annealing, J. Environ. Qual., 27, 1078, 10.2134/jeq1998.00472425002700050013x
Wang, 2014, Spatial sampling design for estimating regional GPP with spatial heterogeneities, IEEE Geosci. Remote Sens. Lett., 11, 539, 10.1109/LGRS.2013.2274453
Webster, 1990
Yang, 2013, Selfish Mules: social profit maximization in sparse sensornets using rationally-selfish human relays, IEEE J. Sel. Areas Commun., 31, 1124, 10.1109/JSAC.2013.130614
Yang, 2014, Distributed optimal lexicographic max–min rate allocation in solar-powered wireless sensor networks, ACM Trans. Sensor Netw., 11, 1550, 10.1145/2630882