Multi-objective node deployment in WSNs: In search of an optimal trade-off among coverage, lifetime, energy consumption, and connectivity

Engineering Applications of Artificial Intelligence - Tập 26 - Trang 405-416 - 2013
Soumyadip Sengupta1, Swagatam Das2, M.D. Nasir1, B.K. Panigrahi3
1Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata-700 032, India
2Electronics and Communication Sciences Unit, Indian Statistical Institute, Kolkata-700 108, India
3Department of Electrical Engineering, Indian Institute of Technology (IIT), Delhi, India

Tài liệu tham khảo

Al-Karaki, 2004, Routing techniques in wireless sensor networks: a survey, IEEE Wirel. Commun., 6, 10.1109/MWC.2004.1368893 Aitsaadi, 2009, A tabu search WSN deployment method for monitoring geographically irregular distributed events, Sensors, 9, 1625, 10.3390/s90301625 Aitsaadi, N., Achir, N., Boussetta, K., Pujolle, G., 2009b. Potential field approach to ensure connectivity and differentiated detection in WSN deployment. In: IEEE International Conference on Communications (ICC) Dresden, 14–18 June. Adra, 2009, Convergence acceleration operator for multiobjective optimization, IEEE Trans. Evol. Computat., 13, 825, 10.1109/TEVC.2008.2011743 Bulusu, 2005 Bojkovic, 2008, A survey on wireless sensor networks deployment, WSEAS Trans. Commun., 7, 1172 Callaway, 2003 Chakrabarty, 2002, Grid coverage for surveillance and target location in distributed sensor networks, IEEE Trans. Comput., 51, 1448, 10.1109/TC.2002.1146711 Cardei, 2005 Cherition, 1976, Finding minimum spanning trees, SIAM J. Comput., 724, 10.1137/0205051 Das, 2011, Differential evolution: a survey of the state-of-the-art, IEEE Trans. on Evol. Comput., 15, 4, 10.1109/TEVC.2010.2059031 Dijkstra, 1959, A note on two problems in connexion with graphs, Numer. Math., 1, 269, 10.1007/BF01386390 Deb, 2001 Deb, 2002, A fast and elitist multi-objective genetic algorithm: NSGA-II,, IEEE Trans. Evol. Comput., 6, 182, 10.1109/4235.996017 Deb, 2000, An efficient constraint-handling method for genetic algorithms, Comput. Methods Appl. Mech. Eng., 186, 311, 10.1016/S0045-7825(99)00389-8 Farina, 2004, A fuzzy definition of “optimality” for many criteria optimization problems, IEEE Trans. Syst. Man Cybern. A—Syst. Hum., 34, 315, 10.1109/TSMCA.2004.824873 Kennedy, 1995, Particle swarm optimization, Proc. IEEE Int. Conf. Neural Networks, 1942, 10.1109/ICNN.1995.488968 Koduru, P., Das, S., Welch, S.M., Roe, J.L., 2004. Fuzzy dominance based multi-objective GA-simplex hybrid algorithms applied to gene network models. In: Deb, K. et al. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference, Seattle, WA, Lecture Notes in Computer Science, vol. 3102, pp. 356–367 Liu, 2007, On the deployment of wireless data back-haul networks, IEEE Trans. Wirel. Commun., 6, 1426, 10.1109/TWC.2007.348339 Li, 2009, Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II, IEEE Trans. Evol. Computat., 12, 284, 10.1109/TEVC.2008.925798 Liang, 2006, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Trans. Evol. Computat., 10, 281, 10.1109/TEVC.2005.857610 Meguerdichian, 2001, Coverage problems in wireless ad-hoc sensor networks, IEEE Infocom, 3, 1380 Martins, F.V.C., Nakamura, F.G., Quintao, F.P., Mateus, G.R., 2007. Model and algorithms for the density, coverage and connectivity control problem in flat WSNs. In: Proceedings of the International Network Optimization Conference (INOC’07), 2007, pp. 1145–1152. Martins, 2011, A hybrid multiobjective evolutionary approach for improving the performance of wireless sensor Networks, IEEE Sens. J., 11, 10.1109/JSEN.2010.2048897 Miettinen, 1999 Mendel, 2003, Fuzzy logic systems for engineering, a tutorial, Proceedings of IEEE, 83, 100 Nasir, 2011, An improved Multiobjective Evolutionary Algorithm based on decomposition with fuzzy dominance, IEEE CEC, 765 Park, S., Savvides, A., Srivastava, M.B., 2001. Simulating networks of wireless sensors. In: Proceedings of the Conference on Winter Simulation (WSC’01), Washington, DC, pp. 1330–1338. Price, 2005 Schott, J.R., 1995. Fault Tolerant Design Using Single and Multictiteria Gentetic Algorithm Optimization. Master Thesis, Massachusetts Institute of Technology. Wu, 2007, On efficient deployment of sensors on planar grid, Elsevier Comput. Commun., 30, 2721, 10.1016/j.comcom.2007.05.012 Xue, 2006, On the lifetime of large scale sensor networks, Elsevier Comput. Commun., 29, 502, 10.1016/j.comcom.2004.12.033 Yick, 2008, Wireless sensor network survey, Comput. Netw., 52, 2292, 10.1016/j.comnet.2008.04.002 Younis, 2007, Strategies and techniques for node placement in wireless sensor networks: a survey, Elsevier Ad Hoc Netw., 6, 621, 10.1016/j.adhoc.2007.05.003 Zhao, 2004 Zhang, Q., Liu, W., Li, H., 2009. The performance of a new MOEA/D on CEC09 MOP test instances. In: Proceedings of the Eleventh Conference on Congress on Evolutionary Computation, Trondheim, Norway, May 18–21, 2009. IEEE Press, Piscataway, NJ, pp. 203–208. Zhang, Q., Zhou, A., Zhao, S.Z., Suganthan, P.N., Liu, W., Tiwari, S., 2008. Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition, Technical Report CES-887, University of Essex and Nanyang Technological University Zhang, 2009, JADE: adaptive differential evolution with optional external archive, IEEE Transactions on Evolutionary Computation, 13, 945, 10.1109/TEVC.2009.2014613 Zhang, 2007, MOEA/D: a multi-objective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Computat., 11, 712, 10.1109/TEVC.2007.892759