Multi-objective missile boat scheduling problem using an integrated approach of NSGA-II, MOEAD, and data envelopment analysis
Tài liệu tham khảo
Smet, 2014, The shift minimisation personnel task scheduling problem: A new hybrid approach and computational insights, Omega, 46, 64, 10.1016/j.omega.2014.02.003
Smet, 2016, Heuristic decomposition approaches for an integrated task scheduling and personnel rostering problem, Comput. Oper. Res., 76, 60, 10.1016/j.cor.2016.05.016
Damcı-Kurt, 2018, Improving physician schedules by leveraging equalization: Cases from hospitals in U.S., Omega, 85, 182, 10.1016/j.omega.2018.06.011
Van den Bergh, 2013, Personnel scheduling: A literature review, European J. Oper. Res., 226, 367, 10.1016/j.ejor.2012.11.029
Maenhout, 2013, An integrated nurse staffing and scheduling analysis for longer-term nursing staff allocation problems, Omega, 41, 485, 10.1016/j.omega.2012.01.002
Gramling, 1989, Concentrated work scheduling: Enabling and constraining aspects, Sociol. Perspect., 32, 47, 10.2307/1389007
Coello, 2007
E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the Strength Pareto Evolutionary Algorithm, TIK Report, 2001, p. 103.
Deb, 2002, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6, 182, 10.1109/4235.996017
Deb, 2013, An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints, IEEE Trans. Evol. Comput., 18, 577, 10.1109/TEVC.2013.2281535
Coello, 2004, Handling multiple objectives with particle swarm optimization, IEEE Trans. Evol. Comput., 8, 256, 10.1109/TEVC.2004.826067
Zhang, 2007, MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11, 712, 10.1109/TEVC.2007.892759
Li, 2009, Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II, IEEE Trans. Evol. Comput., 13, 284, 10.1109/TEVC.2008.925798
Ishibuchi, 2009, Evolutionary many-objective optimization by NSGA-II and MOEA/D with large populations, 1758
Peng, 2009, Comparison between MOEA/D and NSGA-II on the multi-objective travelling salesman problem, 309
Scherer, 2005, What are emotions? And how can they be measured?, Soc. Sci. Inf., 44, 695, 10.1177/0539018405058216
Slovic, 1995, The construction of preference, Am. Psychol., 50, 364, 10.1037/0003-066X.50.5.364
Pohekar, 2004, Application of multi-criteria decision making to sustainable energy planning—A review, Renew. Sustain. Energy Rev., 8, 365, 10.1016/j.rser.2003.12.007
Charnes, 1978, Measuring the efficiency of decision making units, Eur. J. Oper. Res., 2, 429, 10.1016/0377-2217(78)90138-8
Chen, 2004, Multi-criteria design of an X control chart, Comput. Ind. Eng., 46, 877, 10.1016/j.cie.2004.05.020
Tavana, 2016, Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS, Expert Syst. Appl., 50, 17, 10.1016/j.eswa.2015.11.007
Li, 2007, A super-efficiency model for ranking efficient units in data envelopment analysis, Appl. Math. Comput., 184, 638
Andersen, 1993, A procedure for ranking efficient units in data envelopment analysis, Manag. Sci., 39, 1261, 10.1287/mnsc.39.10.1261
Edie, 1954, Traffic delays at toll booths, J. Oper. Res. Soc. Am., 2, 107
Dantzig, 1954, Letter to the editor—A comment on Edie’s Traffic delays at toll booths, J. Oper. Res. Soc. Am., 2, 339
Aickelin, 2000, Exploiting problem structure in a genetic algorithm approach to a nurse rostering problem, J. Schedul., 3, 139, 10.1002/(SICI)1099-1425(200005/06)3:3<139::AID-JOS41>3.0.CO;2-2
Moz, 2007, A genetic algorithm approach to a nurse rerostering problem, Comput. Oper. Res., 34, 667, 10.1016/j.cor.2005.03.019
Knust, 2011, Shift scheduling for tank trucks, Omega, 39, 513, 10.1016/j.omega.2010.10.009
Baker, 1976, Workforce allocation in cyclical scheduling problems: A survey, J. Oper. Res. Soc., 27, 155, 10.1057/jors.1976.30
Lin, 2015, Nurse scheduling with joint normalized shift and day-off preference satisfaction using a genetic algorithm with immigrant scheme, Int. J. Distrib. Sens. Netw., 11, 10.1155/2015/595419
Ernst, 2004, An annotated bibliography of personnel scheduling and rostering, Ann. Oper. Res., 127, 21, 10.1023/B:ANOR.0000019087.46656.e2
Valouxis, 2012, A systematic two phase approach for the nurse rostering problem, European J. Oper. Res., 219, 425, 10.1016/j.ejor.2011.12.042
Corominas, 2010, Capacity planning with working time accounts in services, J. Oper. Res. Soc., 61, 321, 10.1057/jors.2008.166
Lin, 2012, Crew rostering with multiple goals: An empirical study, Comput. Ind. Eng., 63, 483, 10.1016/j.cie.2012.04.013
Hoffmann, 2017, Solving practical railway crew scheduling problems with attendance rates, Bus. Inf. Syst. Eng., 59, 147, 10.1007/s12599-017-0470-8
Hanafi, 2014, A hybrid constructive heuristic and simulated annealing for railway crew scheduling, Comput. Ind. Eng., 70, 11, 10.1016/j.cie.2014.01.002
Limlawan, 2014, A hybrid particle swarm optimization and an improved heuristic algorithm for an airline crew rostering problem, Sci. Asia, 456, 10.2306/scienceasia1513-1874.2014.40.456
H. Tamaki, H. Kita, S. Kobayashi, Multi-objective optimization by genetic algorithms: A review, in: Proc. of IEEE Int. Conf. Evolutionary Computation, 1996, pp. 517–522.
Blasco, 2008, A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization, Inform. Sci., 178, 3908, 10.1016/j.ins.2008.06.010
Konak, 2006, Multi-objective optimization using genetic algorithms: A tutorial, Reliab. Eng. Syst. Saf., 91, 992, 10.1016/j.ress.2005.11.018
Srinivas, 1994, Muiltiobjective optimization using nondominated sorting in genetic algorithms, Evol. Comput., 2, 221, 10.1162/evco.1994.2.3.221
Rey Horn, 1994, A niched Pareto genetic algorithm for multiobjective optimization, 82
Fonseca, 1993, Genetic algorithms for multiobjective optimization: Formulation discussion and generalization, 416
Coello, 2006, Evolutionary multi-objective optimization: A historical view of the field, IEEE Comput. Intell. Mag., 1, 28, 10.1109/MCI.2006.1597059
Zitzler, 1999, Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach, IEEE Trans. Evol. Comput., 3, 257, 10.1109/4235.797969
Knowles, 2000, Approximating the nondominated front using the Pareto archived evolution strategy, Evol. Comput., 8, 149, 10.1162/106365600568167
Deb, 2000, A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, 849
Zhang, 2007, MOEA/D: a multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11, 712, 10.1109/TEVC.2007.892759
Miettinen, 2012
Lewin, 1986, Determining organizational effectiveness: Another look, and an agenda for research, Manag. Sci., 32, 514, 10.1287/mnsc.32.5.514
Bean, 1994, Genetic algorithms and random keys for sequencing and optimization, ORSA J. Comput., 6, 154, 10.1287/ijoc.6.2.154
Czyzżak, 1998, Pareto simulated annealing—A metaheuristic technique for multiple-objective combinatorial optimization, J. Multi-Criteria Decision Anal., 7, 34, 10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6
Schott, 1995
Van Veldhuizen, 1999
Li, 2015, Solving multi-objective multi-stage weapon target assignment problem via adaptive NSGA-II and adaptive MOEA/D: A comparison study, 3132
Lai, 2017, Entropic simplified swarm optimization for the task assignment problem, Appl. Soft Comput., 58, 115, 10.1016/j.asoc.2017.04.030
Lai, 2019, Integrating simplified swarm optimization with AHP for solving capacitated military logistic depot location problem, Appl. Soft Comput., 78, 1, 10.1016/j.asoc.2019.02.016
Lai, 2019, A novel nondominated sorting simplified swarm optimization for multi-stage capacitated facility location problems with multiple quantitative and qualitative objectives, Appl. Soft Comput., 84, 10.1016/j.asoc.2019.105684