Multi-objective missile boat scheduling problem using an integrated approach of NSGA-II, MOEAD, and data envelopment analysis

Applied Soft Computing - Tập 127 - Trang 109353 - 2022
Chun-Chih Chiu1, Chyh-Ming Lai2
1National Chin-Yi University of Technology, No. 57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung 41170, Taiwan
2The Graduate School of Resources Management and Decision Science, National Defense University, Taipei 112, Taiwan

Tài liệu tham khảo

Smet, 2014, The shift minimisation personnel task scheduling problem: A new hybrid approach and computational insights, Omega, 46, 64, 10.1016/j.omega.2014.02.003 Smet, 2016, Heuristic decomposition approaches for an integrated task scheduling and personnel rostering problem, Comput. Oper. Res., 76, 60, 10.1016/j.cor.2016.05.016 Damcı-Kurt, 2018, Improving physician schedules by leveraging equalization: Cases from hospitals in U.S., Omega, 85, 182, 10.1016/j.omega.2018.06.011 Van den Bergh, 2013, Personnel scheduling: A literature review, European J. Oper. Res., 226, 367, 10.1016/j.ejor.2012.11.029 Maenhout, 2013, An integrated nurse staffing and scheduling analysis for longer-term nursing staff allocation problems, Omega, 41, 485, 10.1016/j.omega.2012.01.002 Gramling, 1989, Concentrated work scheduling: Enabling and constraining aspects, Sociol. Perspect., 32, 47, 10.2307/1389007 Coello, 2007 E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the Strength Pareto Evolutionary Algorithm, TIK Report, 2001, p. 103. Deb, 2002, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6, 182, 10.1109/4235.996017 Deb, 2013, An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints, IEEE Trans. Evol. Comput., 18, 577, 10.1109/TEVC.2013.2281535 Coello, 2004, Handling multiple objectives with particle swarm optimization, IEEE Trans. Evol. Comput., 8, 256, 10.1109/TEVC.2004.826067 Zhang, 2007, MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11, 712, 10.1109/TEVC.2007.892759 Li, 2009, Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II, IEEE Trans. Evol. Comput., 13, 284, 10.1109/TEVC.2008.925798 Ishibuchi, 2009, Evolutionary many-objective optimization by NSGA-II and MOEA/D with large populations, 1758 Peng, 2009, Comparison between MOEA/D and NSGA-II on the multi-objective travelling salesman problem, 309 Scherer, 2005, What are emotions? And how can they be measured?, Soc. Sci. Inf., 44, 695, 10.1177/0539018405058216 Slovic, 1995, The construction of preference, Am. Psychol., 50, 364, 10.1037/0003-066X.50.5.364 Pohekar, 2004, Application of multi-criteria decision making to sustainable energy planning—A review, Renew. Sustain. Energy Rev., 8, 365, 10.1016/j.rser.2003.12.007 Charnes, 1978, Measuring the efficiency of decision making units, Eur. J. Oper. Res., 2, 429, 10.1016/0377-2217(78)90138-8 Chen, 2004, Multi-criteria design of an X control chart, Comput. Ind. Eng., 46, 877, 10.1016/j.cie.2004.05.020 Tavana, 2016, Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS, Expert Syst. Appl., 50, 17, 10.1016/j.eswa.2015.11.007 Li, 2007, A super-efficiency model for ranking efficient units in data envelopment analysis, Appl. Math. Comput., 184, 638 Andersen, 1993, A procedure for ranking efficient units in data envelopment analysis, Manag. Sci., 39, 1261, 10.1287/mnsc.39.10.1261 Edie, 1954, Traffic delays at toll booths, J. Oper. Res. Soc. Am., 2, 107 Dantzig, 1954, Letter to the editor—A comment on Edie’s Traffic delays at toll booths, J. Oper. Res. Soc. Am., 2, 339 Aickelin, 2000, Exploiting problem structure in a genetic algorithm approach to a nurse rostering problem, J. Schedul., 3, 139, 10.1002/(SICI)1099-1425(200005/06)3:3<139::AID-JOS41>3.0.CO;2-2 Moz, 2007, A genetic algorithm approach to a nurse rerostering problem, Comput. Oper. Res., 34, 667, 10.1016/j.cor.2005.03.019 Knust, 2011, Shift scheduling for tank trucks, Omega, 39, 513, 10.1016/j.omega.2010.10.009 Baker, 1976, Workforce allocation in cyclical scheduling problems: A survey, J. Oper. Res. Soc., 27, 155, 10.1057/jors.1976.30 Lin, 2015, Nurse scheduling with joint normalized shift and day-off preference satisfaction using a genetic algorithm with immigrant scheme, Int. J. Distrib. Sens. Netw., 11, 10.1155/2015/595419 Ernst, 2004, An annotated bibliography of personnel scheduling and rostering, Ann. Oper. Res., 127, 21, 10.1023/B:ANOR.0000019087.46656.e2 Valouxis, 2012, A systematic two phase approach for the nurse rostering problem, European J. Oper. Res., 219, 425, 10.1016/j.ejor.2011.12.042 Corominas, 2010, Capacity planning with working time accounts in services, J. Oper. Res. Soc., 61, 321, 10.1057/jors.2008.166 Lin, 2012, Crew rostering with multiple goals: An empirical study, Comput. Ind. Eng., 63, 483, 10.1016/j.cie.2012.04.013 Hoffmann, 2017, Solving practical railway crew scheduling problems with attendance rates, Bus. Inf. Syst. Eng., 59, 147, 10.1007/s12599-017-0470-8 Hanafi, 2014, A hybrid constructive heuristic and simulated annealing for railway crew scheduling, Comput. Ind. Eng., 70, 11, 10.1016/j.cie.2014.01.002 Limlawan, 2014, A hybrid particle swarm optimization and an improved heuristic algorithm for an airline crew rostering problem, Sci. Asia, 456, 10.2306/scienceasia1513-1874.2014.40.456 H. Tamaki, H. Kita, S. Kobayashi, Multi-objective optimization by genetic algorithms: A review, in: Proc. of IEEE Int. Conf. Evolutionary Computation, 1996, pp. 517–522. Blasco, 2008, A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization, Inform. Sci., 178, 3908, 10.1016/j.ins.2008.06.010 Konak, 2006, Multi-objective optimization using genetic algorithms: A tutorial, Reliab. Eng. Syst. Saf., 91, 992, 10.1016/j.ress.2005.11.018 Srinivas, 1994, Muiltiobjective optimization using nondominated sorting in genetic algorithms, Evol. Comput., 2, 221, 10.1162/evco.1994.2.3.221 Rey Horn, 1994, A niched Pareto genetic algorithm for multiobjective optimization, 82 Fonseca, 1993, Genetic algorithms for multiobjective optimization: Formulation discussion and generalization, 416 Coello, 2006, Evolutionary multi-objective optimization: A historical view of the field, IEEE Comput. Intell. Mag., 1, 28, 10.1109/MCI.2006.1597059 Zitzler, 1999, Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach, IEEE Trans. Evol. Comput., 3, 257, 10.1109/4235.797969 Knowles, 2000, Approximating the nondominated front using the Pareto archived evolution strategy, Evol. Comput., 8, 149, 10.1162/106365600568167 Deb, 2000, A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, 849 Zhang, 2007, MOEA/D: a multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11, 712, 10.1109/TEVC.2007.892759 Miettinen, 2012 Lewin, 1986, Determining organizational effectiveness: Another look, and an agenda for research, Manag. Sci., 32, 514, 10.1287/mnsc.32.5.514 Bean, 1994, Genetic algorithms and random keys for sequencing and optimization, ORSA J. Comput., 6, 154, 10.1287/ijoc.6.2.154 Czyzżak, 1998, Pareto simulated annealing—A metaheuristic technique for multiple-objective combinatorial optimization, J. Multi-Criteria Decision Anal., 7, 34, 10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6 Schott, 1995 Van Veldhuizen, 1999 Li, 2015, Solving multi-objective multi-stage weapon target assignment problem via adaptive NSGA-II and adaptive MOEA/D: A comparison study, 3132 Lai, 2017, Entropic simplified swarm optimization for the task assignment problem, Appl. Soft Comput., 58, 115, 10.1016/j.asoc.2017.04.030 Lai, 2019, Integrating simplified swarm optimization with AHP for solving capacitated military logistic depot location problem, Appl. Soft Comput., 78, 1, 10.1016/j.asoc.2019.02.016 Lai, 2019, A novel nondominated sorting simplified swarm optimization for multi-stage capacitated facility location problems with multiple quantitative and qualitative objectives, Appl. Soft Comput., 84, 10.1016/j.asoc.2019.105684