Multi-objective design optimization of heat exchangers using elitist-Jaya algorithm
Tóm tắt
Từ khóa
Tài liệu tham khảo
Yang, J., Oh, S.R., Liu, W.: Optimization of shell-and -tube heat exchangers using a general design approach motivated by constructal theory. Int. J. Heat Mass Transf. 77, 114–1154 (2014)
Yang, J., Oh, S.R., Liu, W., Jacobi, A.M.: Optimization of shell-and-tube heat exchangers conforming to TEMA standards with general design approach motivated by constructal theory. Energy Convers. Manag. 78, 468–476 (2014)
Selbas, O., Kızılkan, M., Reppich, A.: New design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view. Chem. Eng. Proc. 45, 268–275 (2006)
Guo, J., Cheng, L., Xu, M.: Optimization design of shell-and-tube heat exchanger by entropy generation minimization and genetic algorithm. Appl. Therm. Eng. 29, 2954–2960 (2009)
Huang, S., Zhenjun, M., Cooper, P.: Optimizing heat exchanger networks with genetic algorithms for designing each heat exchanger and condensers. Appl. Therm. Eng. 29, 3437–3444 (2009)
Fettaka, S., Thibault, J., Gupta, Y.: Design of shell-and-tube heat exchangers using multi objective optimization. Int. J. Heat Mass Transf. 60, 343–354 (2013)
Ponce-Ortega, J.M., Serna-Gonzalez, M., Jimenez-Gutierrez, A.: Use of genetic algorithms for the optimal design of shell-and-tube heat exchangers. Appl. Therm. Eng. 29, 203–209 (2009)
Ozcelik, Y.: Exergetic optimization of shell-and-tube heat exchangers by genetic based algorithm. Appl. Therm. Eng. 27, 1849–1856 (2007)
Amini, M., Bazargan, M.: Two objective optimization in shell-and-tube heat exchangers using genetic algorithm. Appl. Therm. Eng. 69, 278–285 (2014)
Daroczy, L., Janiga, G., Thevenin, D.: Systematic analysis of the heat exchanger arrangement problem using multi-objective genetic optimization. Energy 65, 364–373 (2014)
Khosravi, R., Khosravi, A., Nahavandi, S., Hajabdollah, H.: Effectiveness of evolutionary algorithms for optimization of heat exchangers. Energy Convers. Manag. 89, 281–288 (2015)
Caputo, A.C., Pelagagge, P.M., Salini, P.: Heat exchanger design based on economic optimization. Appl. Therm. Eng. 28, 1151–1159 (2008)
Sanaye, S., Hajabdollahi, H.: Multi-objective optimization of shell and tube heat exchangers. Appl. Therm. Eng. 30, 1937–1945 (2010)
Sanaye, S., Hajabdollahi, H.: Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm. Appl. Energy 30, 1937–1945 (2010)
Wong, J.Y.Q., Sharma, S., Rangaiah, G.P.: Design of shell-and-tube heat exchangers for multiple objectives using elitist non-dominated sorting genetic algorithm with termination criteria. Appl. Therm. Eng. 93, 888–899 (2016)
Sadeghzadeh, H., Ehyaei, M.A., Rosen, M.A.: Techno-economic optimization of a shell and tube heat exchanger by genetic and particle swarm algorithms. Energy Convers. Manag. 93, 84–91 (2015)
Mishra, M., Das, P.K., Sarangi, S.: Optimum design of crossflow plate-fin heat exchangers through genetic algorithm. Int. J. Heat Exch. 5, 379–402 (2004)
Bidabadi, M., Sadaghiani, A.K., Azad, A.V.: Spiral heat exchanger optimization using genetic algorithm. Sci. Iran 20, 1445–1454 (2013)
Jena, S., Patro, P., Behera, S.S.: Multi-objective optimization of design parameters of a shell & tube type heat exchanger using genetic algorithm. Int. J. Curr. Eng. Technol. 3, 1379–1386 (2013)
Huang, S., Ma, Z., Wang, F.: A multi-objective design optimization strategy for vertical ground heat exchangers. Energy Build. 87, 233–242 (2015)
Selleri, T., Najafi, B., Rinaldi, F., Colombo, G.: Mathematical modeling and multi-objective optimization of a mini-channel heat exchanger via genetic algorithm. J. Therm. Sci. Eng. Appl. 5, art. no. 031013 (2013)
Hajabdollahi, H., Ahmadi, P., Dincer, I.: Multi-objective optimization of plain fin-and-tube heat exchanger using evolutionary algorithm. J. Thermophys. Heat Transf. 25, 424–431 (2011)
Rao, R.V., Patel, V.K.: Thermodynamic optimization of cross flow plate-fin heat exchanger using a particle swarm optimization algorithm. Int. J. Therm. Sci. 49, 1712–1721 (2010)
Turgut, O.E.: Hybrid chaotic quantum behaved particle swarm optimization algorithm for thermal design of plate fin heat exchangers. Appl. Math. Model. (2015). doi: 10.1016/j.apm.2015.05.003 (Accepted for publication)
Ravagnani, M.A.S.S., Silva, A.P., Biscaiac, E.C., Caballero, J.A.: Optimal design of shell-and tube heat exchangers using particle swarm optimization. Ind. Eng. Chem. Res. 48(6), 2927–2935 (2009)
Patel, V.K., Rao, R.V.: Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique. Appl. Therm. Eng. 30, 1417–1425 (2010)
Mariani, V.C., Duck, A., Guerra, F.A., Coelho, L.S., Rao, R.V.: Chaotic quantum-behaved particle swarm approach applied to optimization of heat exchangers. Appl. Therm. Eng. 42, 119–128 (2012)
Lahiri, S.K., Khalfe, N.M., Wadhwa, S.K.: Particle swarm optimization technique for heat exchanger design. Chem. Prod. Process. Model 7(1), 1934–1948 (2012)
Khalfe, N.M., Lahiri, S.K., Wadhwa, S.K.: Simulated annealing technique to design minimum cost exchanger. CI&CEQ 17(4), 409–427 (2011)
Sahin, A.S., Kılıç, B., Kılıç, U.: Design and economic optimization of shell and tube heat exchangers using artificial bee Colony (ABC) algorithm. Energy Convers. Manag. 52, 3356–3362 (2010)
Hadidi, A., Hadidi, M., Nazari, A.: A new design approach for shell-and-tube heat exchangers using imperialist competitive algorithm (ICA) from economic point of view. Energy Convers. Manag. 67, 66–74 (2013)
Hadidi, A., Nazari, A.: Design and economic optimization of shell-and-tube heat exchangers using biogeography-based (BBO) algorithm. Appl. Therm. Eng. 51, 1263–1272 (2013)
Hadidi, A.: A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm. Appl. Energy 150, 196–210 (2015)
Asadi, M., Song, Y., Sunden, B., Xie, G.: Economic optimization design of shell-and- tube heat exchangers by a cuckoo-search-algorithm. Appl. Therm. Eng. 73, 1032–1040 (2014)
Wang, Z., Li, Y.: Irreversibility analysis for optimization design of plate fin heat exchangers using a multi-objective cuckoo search algorithm. Energ Convers. Manag. 101, 126–135 (2015)
Fesanghary, M., Damangir, E., Soleimani, I.: Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm. Appl. Therm. Eng. 29, 1026–1031 (2009)
Turgut, O.E., Turgut, M.S., Coban, M.T.: Design and economic investigation of shell and tube heat exchangers using Improved Intelligent Tuned Harmony Search algorithm. ASEJ 5, 1215–1231 (2014)
Mohanty, D.K.: Application of firefly algorithm for design optimization of a shell and tube heat exchanger from economic point of view. Int. J. Therm. Sci. 102, 228–238 (2016)
Rao, R.V., Patel, V.K.: Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm. Appl. Math. Model. 37, 1147–1162 (2013)
Ayala, H.V.H., Keller, P., Morais, M.D.F., Mariani, V.C., Coelho, L.D.S., Rao, R.V.: Design of heat exchangers using a novel multi objective free search differential evolution paradigm. Appl. Therm. Eng. 94, 170–177 (2016)
Babu, B.V., Munawar, S.A.: Differential evolution strategies for optimal design shell and tube heat exchangers. Chem. Eng. Sci. 62, 720–3739 (2007)
Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey II—non-deterministic and hybrid methods. Energy Syst. 3(3), 259–289 (2012)
Mandegari, M.A., Pahlavanzadeh, H., Farzad, S.: Energy approach analysis of desiccant wheel operation. Energy Syst. 5, 551–569 (2014)
Sayed, M., Gharghory, S.M., Kamal, H.A.: Euclidean distance-based multi-objective particle swarm optimization for optimal power plant set points. Energy Syst. doi: 10.1007/s12667-015-0182-4
Wouagfack, P.A.N., Tchinda, R.: Irreversible three-heat-source refrigerator with heat transfer law of Q $$\alpha \Delta $$ α Δ (T $$^{-1}$$ - 1 ) and its performance optimization based on ECOP criterion. Energy Syst. 2, 359–376 (2011)
Rao, R.V.: Teaching Learning Based Optimization Algorithm and its Engineering Applications. Springer, London (2016)
Rao, R.V.: Review of applications of TLBO algorithm and a tutorial for beginners to solve the unconstrained and constrained optimization problems. Decis. Sci. Lett. 5, 1–30 (2016)
Rao, R.V.: Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7(1), 19–34 (2016)
Chen, D., Zhao, C.: Particle swarm optimization with adaptive population size and its application. Appl. Soft. Comput. 9, 39–48 (2009)
Shah, R.K., Sekulic, P.: Fundamental of Heat Exchanger Design. John Wiley & Sons Inc, Hoboken, New Jersey (2003)
Taborek, J.: Industrial heat exchanger design practices. In: Boiler Evaporators, and Condenser. Wiley, New York (1991)
Kakac, S., Liu, H.: Heat Exchangers Selection Rating, and Thermal Design. CRC Press, New York (2000)
Franco, A., Giannini, N.: Optimum thermal design of modular compact heat exchangers structure for heat recovery steam generators. Appl. Therm. Eng. 25, 1293–313 (2005)
Kays, W.M., London, A.L.: Compact Heat Exchangers, 3rd edn. McGraw Hill, New York (1984)
Costa, L.H., Queiroz, M.: Design optimization of shell-and-tube heat exchangers. Appl. Therm. Eng. 28, 1798–1805 (2008)
Manglik, R.M., Bergles, A.E.: Heat transfer and pressure drop correlations for the rectangular offset-strip-fin compact heat exchanger. Exp. Therm. Fluid Sci. 10, 171–80 (1995)
Rao, R.V., Waghmare, G.G.: A new optimization algorithm for solving complex constrained design optimization problems. Eng. Optimiz. (2016). doi: 10.1080/0305215X.2016.1164855