Multi-objective design optimization of heat exchangers using elitist-Jaya algorithm

Springer Science and Business Media LLC - Tập 9 Số 2 - Trang 305-341 - 2018
R. Venkata Rao1, Ankit Saroj1
1Mechanical Engineering Department, Saradar Vallabhbhai National Institute of Technology, Surat, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Yang, J., Oh, S.R., Liu, W.: Optimization of shell-and -tube heat exchangers using a general design approach motivated by constructal theory. Int. J. Heat Mass Transf. 77, 114–1154 (2014)

Yang, J., Oh, S.R., Liu, W., Jacobi, A.M.: Optimization of shell-and-tube heat exchangers conforming to TEMA standards with general design approach motivated by constructal theory. Energy Convers. Manag. 78, 468–476 (2014)

Selbas, O., Kızılkan, M., Reppich, A.: New design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view. Chem. Eng. Proc. 45, 268–275 (2006)

Guo, J., Cheng, L., Xu, M.: Optimization design of shell-and-tube heat exchanger by entropy generation minimization and genetic algorithm. Appl. Therm. Eng. 29, 2954–2960 (2009)

Huang, S., Zhenjun, M., Cooper, P.: Optimizing heat exchanger networks with genetic algorithms for designing each heat exchanger and condensers. Appl. Therm. Eng. 29, 3437–3444 (2009)

Fettaka, S., Thibault, J., Gupta, Y.: Design of shell-and-tube heat exchangers using multi objective optimization. Int. J. Heat Mass Transf. 60, 343–354 (2013)

Ponce-Ortega, J.M., Serna-Gonzalez, M., Jimenez-Gutierrez, A.: Use of genetic algorithms for the optimal design of shell-and-tube heat exchangers. Appl. Therm. Eng. 29, 203–209 (2009)

Ozcelik, Y.: Exergetic optimization of shell-and-tube heat exchangers by genetic based algorithm. Appl. Therm. Eng. 27, 1849–1856 (2007)

Amini, M., Bazargan, M.: Two objective optimization in shell-and-tube heat exchangers using genetic algorithm. Appl. Therm. Eng. 69, 278–285 (2014)

Daroczy, L., Janiga, G., Thevenin, D.: Systematic analysis of the heat exchanger arrangement problem using multi-objective genetic optimization. Energy 65, 364–373 (2014)

Khosravi, R., Khosravi, A., Nahavandi, S., Hajabdollah, H.: Effectiveness of evolutionary algorithms for optimization of heat exchangers. Energy Convers. Manag. 89, 281–288 (2015)

Caputo, A.C., Pelagagge, P.M., Salini, P.: Heat exchanger design based on economic optimization. Appl. Therm. Eng. 28, 1151–1159 (2008)

Sanaye, S., Hajabdollahi, H.: Multi-objective optimization of shell and tube heat exchangers. Appl. Therm. Eng. 30, 1937–1945 (2010)

Sanaye, S., Hajabdollahi, H.: Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm. Appl. Energy 30, 1937–1945 (2010)

Wong, J.Y.Q., Sharma, S., Rangaiah, G.P.: Design of shell-and-tube heat exchangers for multiple objectives using elitist non-dominated sorting genetic algorithm with termination criteria. Appl. Therm. Eng. 93, 888–899 (2016)

Sadeghzadeh, H., Ehyaei, M.A., Rosen, M.A.: Techno-economic optimization of a shell and tube heat exchanger by genetic and particle swarm algorithms. Energy Convers. Manag. 93, 84–91 (2015)

Mishra, M., Das, P.K., Sarangi, S.: Optimum design of crossflow plate-fin heat exchangers through genetic algorithm. Int. J. Heat Exch. 5, 379–402 (2004)

Bidabadi, M., Sadaghiani, A.K., Azad, A.V.: Spiral heat exchanger optimization using genetic algorithm. Sci. Iran 20, 1445–1454 (2013)

Jena, S., Patro, P., Behera, S.S.: Multi-objective optimization of design parameters of a shell & tube type heat exchanger using genetic algorithm. Int. J. Curr. Eng. Technol. 3, 1379–1386 (2013)

Huang, S., Ma, Z., Wang, F.: A multi-objective design optimization strategy for vertical ground heat exchangers. Energy Build. 87, 233–242 (2015)

Selleri, T., Najafi, B., Rinaldi, F., Colombo, G.: Mathematical modeling and multi-objective optimization of a mini-channel heat exchanger via genetic algorithm. J. Therm. Sci. Eng. Appl. 5, art. no. 031013 (2013)

Hajabdollahi, H., Ahmadi, P., Dincer, I.: Multi-objective optimization of plain fin-and-tube heat exchanger using evolutionary algorithm. J. Thermophys. Heat Transf. 25, 424–431 (2011)

Rao, R.V., Patel, V.K.: Thermodynamic optimization of cross flow plate-fin heat exchanger using a particle swarm optimization algorithm. Int. J. Therm. Sci. 49, 1712–1721 (2010)

Turgut, O.E.: Hybrid chaotic quantum behaved particle swarm optimization algorithm for thermal design of plate fin heat exchangers. Appl. Math. Model. (2015). doi: 10.1016/j.apm.2015.05.003 (Accepted for publication)

Ravagnani, M.A.S.S., Silva, A.P., Biscaiac, E.C., Caballero, J.A.: Optimal design of shell-and tube heat exchangers using particle swarm optimization. Ind. Eng. Chem. Res. 48(6), 2927–2935 (2009)

Patel, V.K., Rao, R.V.: Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique. Appl. Therm. Eng. 30, 1417–1425 (2010)

Mariani, V.C., Duck, A., Guerra, F.A., Coelho, L.S., Rao, R.V.: Chaotic quantum-behaved particle swarm approach applied to optimization of heat exchangers. Appl. Therm. Eng. 42, 119–128 (2012)

Lahiri, S.K., Khalfe, N.M., Wadhwa, S.K.: Particle swarm optimization technique for heat exchanger design. Chem. Prod. Process. Model 7(1), 1934–1948 (2012)

Khalfe, N.M., Lahiri, S.K., Wadhwa, S.K.: Simulated annealing technique to design minimum cost exchanger. CI&CEQ 17(4), 409–427 (2011)

Sahin, A.S., Kılıç, B., Kılıç, U.: Design and economic optimization of shell and tube heat exchangers using artificial bee Colony (ABC) algorithm. Energy Convers. Manag. 52, 3356–3362 (2010)

Hadidi, A., Hadidi, M., Nazari, A.: A new design approach for shell-and-tube heat exchangers using imperialist competitive algorithm (ICA) from economic point of view. Energy Convers. Manag. 67, 66–74 (2013)

Hadidi, A., Nazari, A.: Design and economic optimization of shell-and-tube heat exchangers using biogeography-based (BBO) algorithm. Appl. Therm. Eng. 51, 1263–1272 (2013)

Hadidi, A.: A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm. Appl. Energy 150, 196–210 (2015)

Asadi, M., Song, Y., Sunden, B., Xie, G.: Economic optimization design of shell-and- tube heat exchangers by a cuckoo-search-algorithm. Appl. Therm. Eng. 73, 1032–1040 (2014)

Wang, Z., Li, Y.: Irreversibility analysis for optimization design of plate fin heat exchangers using a multi-objective cuckoo search algorithm. Energ Convers. Manag. 101, 126–135 (2015)

Fesanghary, M., Damangir, E., Soleimani, I.: Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm. Appl. Therm. Eng. 29, 1026–1031 (2009)

Turgut, O.E., Turgut, M.S., Coban, M.T.: Design and economic investigation of shell and tube heat exchangers using Improved Intelligent Tuned Harmony Search algorithm. ASEJ 5, 1215–1231 (2014)

Mohanty, D.K.: Application of firefly algorithm for design optimization of a shell and tube heat exchanger from economic point of view. Int. J. Therm. Sci. 102, 228–238 (2016)

Rao, R.V., Patel, V.K.: Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm. Appl. Math. Model. 37, 1147–1162 (2013)

Ayala, H.V.H., Keller, P., Morais, M.D.F., Mariani, V.C., Coelho, L.D.S., Rao, R.V.: Design of heat exchangers using a novel multi objective free search differential evolution paradigm. Appl. Therm. Eng. 94, 170–177 (2016)

Babu, B.V., Munawar, S.A.: Differential evolution strategies for optimal design shell and tube heat exchangers. Chem. Eng. Sci. 62, 720–3739 (2007)

Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey II—non-deterministic and hybrid methods. Energy Syst. 3(3), 259–289 (2012)

Mandegari, M.A., Pahlavanzadeh, H., Farzad, S.: Energy approach analysis of desiccant wheel operation. Energy Syst. 5, 551–569 (2014)

Sayed, M., Gharghory, S.M., Kamal, H.A.: Euclidean distance-based multi-objective particle swarm optimization for optimal power plant set points. Energy Syst. doi: 10.1007/s12667-015-0182-4

Wouagfack, P.A.N., Tchinda, R.: Irreversible three-heat-source refrigerator with heat transfer law of Q $$\alpha \Delta $$ α Δ (T $$^{-1}$$ - 1 ) and its performance optimization based on ECOP criterion. Energy Syst. 2, 359–376 (2011)

Rao, R.V.: Teaching Learning Based Optimization Algorithm and its Engineering Applications. Springer, London (2016)

Rao, R.V.: Review of applications of TLBO algorithm and a tutorial for beginners to solve the unconstrained and constrained optimization problems. Decis. Sci. Lett. 5, 1–30 (2016)

Rao, R.V.: Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7(1), 19–34 (2016)

Chen, D., Zhao, C.: Particle swarm optimization with adaptive population size and its application. Appl. Soft. Comput. 9, 39–48 (2009)

Shah, R.K., Sekulic, P.: Fundamental of Heat Exchanger Design. John Wiley & Sons Inc, Hoboken, New Jersey (2003)

Taborek, J.: Industrial heat exchanger design practices. In: Boiler Evaporators, and Condenser. Wiley, New York (1991)

Kakac, S., Liu, H.: Heat Exchangers Selection Rating, and Thermal Design. CRC Press, New York (2000)

Franco, A., Giannini, N.: Optimum thermal design of modular compact heat exchangers structure for heat recovery steam generators. Appl. Therm. Eng. 25, 1293–313 (2005)

Kays, W.M., London, A.L.: Compact Heat Exchangers, 3rd edn. McGraw Hill, New York (1984)

Costa, L.H., Queiroz, M.: Design optimization of shell-and-tube heat exchangers. Appl. Therm. Eng. 28, 1798–1805 (2008)

Manglik, R.M., Bergles, A.E.: Heat transfer and pressure drop correlations for the rectangular offset-strip-fin compact heat exchanger. Exp. Therm. Fluid Sci. 10, 171–80 (1995)

Rao, R.V., Waghmare, G.G.: A new optimization algorithm for solving complex constrained design optimization problems. Eng. Optimiz. (2016). doi: 10.1080/0305215X.2016.1164855

Lyndon, W., Phil, H., Luigi, B., Simon, H.: A faster algorithm for calculating hypervolume. IEEE Trans. Evol. Comput. 10(1), 29–37 (2006)