Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Vấn đề phân bổ đơn hàng trong mạng lưới supply chain đa mục tiêu theo mô hình cấp bậc dưới điều kiện mập mờ
Tóm tắt
Trong bài báo này, chúng tôi nghiên cứu mạng lưới cung ứng (SCN) như một bài toán lập trình cấp bậc hai, trong đó mục tiêu chính là xác định phân bổ đơn hàng tối ưu cho các sản phẩm trong bối cảnh nhu cầu của khách hàng và nguồn cung cho các sản phẩm là mập mờ. Trong mô hình SCN được đề xuất, chúng tôi giả định rằng cấp bậc đầu tiên (thủ lĩnh) và cấp bậc thứ hai (người theo sau) vận hành hai nhóm SCN riêng biệt. Thủ lĩnh, người di chuyển trước, xác định số lượng hàng hóa gửi đến các nhà bán lẻ, và sau đó, người theo sau quyết định số lượng của mình một cách hợp lý. Mục tiêu của thủ lĩnh là tối thiểu hóa tổng chi phí vận chuyển, và tương tự, mục tiêu của người theo sau là tối thiểu hóa tổng thời gian giao hàng của SCN, đồng thời cân bằng việc phân bổ đơn hàng tối ưu từ mỗi nguồn, nhà máy, nhà bán lẻ và kho hàng tương ứng. Phương pháp lập trình mục tiêu mập mờ đã được sử dụng để đạt được mức độ cao nhất của các mục tiêu thành viên bằng cách tối thiểu hóa các biến sai lệch, để từ đó có được giải pháp tối ưu hoặc ưa thích nhất cho cả hai cấp bậc. Một ví dụ số học được đưa ra để minh họa các phương pháp được đề xuất.
Từ khóa
#mạng lưới cung ứng #phân bổ đơn hàng #lập trình cấp bậc #mập mờ #chi phí vận chuyển #thời gian giao hàngTài liệu tham khảo
Feili, H., Khoshdoon, M.: A fuzzy optimization model for supply chain production planning with an atotal aspect of decision making. J. Math. Comput. Sci. 2(1), 65–80 (2011)
Liu, S.T., Kao, C.: Solving fuzzy transportation problems based on extension principle. Eur. J. Oper. Res. 153(3), 661–674 (2004)
Liang, T.F.: Distribution planning decisions using interactive fuzzy multi-objective linear programming. Fuzzy Sets Syst. 157(10), 1303–1316 (2006)
Liang, T.F.: Applying fuzzy goal programming to production/transportation planning decisions in a supply chain. Int. J. Syst. Sci. 38(4), 293–304 (2007)
Sakawa, M., Nishizaki, I., Uemura, Y.: Fuzzy programming and profit and cost allocation for a production and transportation problem. Eur. J. Oper. Res. 131(1), 1–15 (2001)
Selim, H., Araz, C., Ozkarahan, I.: Collaborative production–distribution planning in supply chain: a fuzzy goal programming approach. Transp. Res. Part E Logist. Transp. Rev. 44(3), 396–419 (2008)
Aliev, R.A., Fazlollahi, B., Guirimov, B.G., Aliev, R.R.: Fuzzy-genetic approach to aggregate production-distribution planning in supply-chain management. Inf. Sci. 177(20), 4241–4255 (2007)
Chen, S.P., Chang, P.C.: A mathematical programming approach to supply chain models with fuzzy parameters. Eng. Optim. 38(6), 647–669 (2006)
Torabi, S.A., Hassini, E.: An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets Syst. 159(2), 193–214 (2008)
Peidro, D., Mula, J., Poler, R.: Supply chain planning under uncertainty: a fuzzy linear programming approach. In: Fuzzy Systems Conference, 2007. FUZZ-IEEE 2007. IEEE International, pp. 1–6. IEEE (2007)
Gen, M., Tsujimura, Y., Ida, K.: Method for solving multiobjective aggregate production planning problem with fuzzy parameters. Comput. Ind. Eng. 23(1–4), 117–120 (1992)
Gumus, A.T., Guneri, A.F., Keles, S.: Supply chain network designusing an integrated neuro-fuzzy and MILP approach: a comparative design study. Expert Syst. Appl. 36(10), 12570–12577 (2009)
Bilgen, B.: Application of fuzzy mathematical programming approach to the production allocation and distribution supply chain network problem. Expert Syst. Appl. 37(6), 4488–4495 (2010)
Fahimnia, B., Farahani, R.Z., Marian, R., Luong, L.: A review and critique on integrated production-distribution planning models and techniques. J. Manuf. Syst. 32(1), 1–19 (2013)
Jolai, F., Razmi, J., Rostami, N.K.M.: A fuzzy goal programming and metaheuristic algorithms for solving integrated production: distribution planning problem. CEJOR 19(4), 547–569 (2011)
Paksoy, T., Pehlivan, N.Y.: A fuzzy linear programming model for the optimization of multi-stage supply chain networks with triangular and trapezoidal membership functions. J. Franklin Inst. 349(1), 93–109 (2012)
Garai, A., Mandal, P., Roy, T.K.: Intuitionistic fuzzy T-sets based optimization technique for production-distribution planning in supply chain management. OPSEARCH 53(4), 950–975 (2016)
Abo-Sinna, M.A., Baky, I.A.: Fuzzy goal programming procedure to bilevel multiobjective linear fractional programming problems. Int. J. Math. Math. Sci. 2010, 148975 (2010). https://doi.org/10.1155/2010/148975
Baky, I.A.: Fuzzy goal programming algorithm for solving decentralised-level multi-objective programming problems. Fuzzy Sets Syst. 160(18), 2701–2713 (2009)
Bialas, W.F., Karwan, M.H.: Two-level linear programming. Manag. Sci. 30(8), 1004–1020 (1984)
Baky, I.A., Eid, M.H., El Sayed, M.A.: Bi-level multi-objective programming problem with fuzzy demands: a fuzzy goal programming algorithm. Opsearch 51(2), 280–296 (2014)
Birla, R., Agarwal, V.K., Khan, I.A., Mishra, V.N.: An alternative approach for solving bi-level programming problems. Am. J. Oper. Res. 7(03), 239 (2017)
Bagloee, S.A., Asadi, M., Sarvi, M., Patriksson, M.: A hybrid machine-learning and optimization method to solve bi-level problems. Expert Syst. Appl. 95, 142–152 (2018)
Osman, M.S., Emam, O.E., Elsayed, M.A.: Interactive approach for multi-level multi-objective fractional programming problems with fuzzy parameters. Beni-Suef Univ. J. Basic Appl. Sci. 7(1), 139–149 (2018)
Osman, M.S., Emam, O.E., El Sayed, M.A.: Solving multi-level multi-objective fractional programming problems with fuzzy demands via FGP approach. Int. J. Appl. Comput. Math. 4(1), 41 (2018)
Golpîra, H., Najafi, E., Zandieh, M., Sadi-Nezhad, S.: Robust bi-level optimization for green opportunistic supply chain network design problem against uncertainty and environmental risk. Comput. Ind. Eng. 107, 301–312 (2017)
Jalil, S.A., Javaid, S., Muneeb, S.M.: A decentralized multi-level decision making model for solid transportation problem with uncertainty. Int. J. Syst. Assur. Eng. Manag (2018). https://doi.org/10.1007/s13198-018-0720-2
Muneeb, S.M., Adhami, A.Y., Asim, Z., Jalil, S.A.: Bi-level decision making models for advertising allocation problem under fuzzy environment. Int. J. Syst. Assur. Eng. Manag (2018). https://doi.org/10.1007/s13198-018-0723-z
Adhami, A.Y., Muneeb, S.M., Nomani, M.A.: A multi-level decision making model for the supplier selection problem in a fuzzy situation. Oper. Res. Decis. 27(4), 5–26 (2017)
Muneeb, S.M., Adhami, A.Y., Jalil, S.A., Asim, Z.: Decentralised bi-level decision planning model for municipal solid waste recycling and management with cost reliability under uncertain environment. Sustain. Prod. Consum (2018). https://doi.org/10.1016/j.spc.2018.05.009
Amirtaheri, O., Zandieh, M., Dorri, B., Motameni, A.R.: A bi-level programming approach for production-distribution supply chain problem. Comput. Ind. Eng. 110, 527–537 (2017)
Kolak, Oİ., Feyzioğlu, O., Noyan, N.: Bi-level multi-objective traffic network optimisation with sustainability perspective. Expert Syst. Appl. 104, 294–306 (2018)
Jin, S.W., Li, Y.P., Nie, S.: An integrated bi-level optimization model for air quality management of Beijing’s energy system under uncertainty. J. Hazard. Mater. 350, 27–37 (2018)
Parvasi, S.P., Mahmoodjanloo, M., Setak, M.: A bi-level school bus routing problem with bus stops selection and possibility of demand outsourcing. Appl. Soft Comput. 61, 222–238 (2017)
Zeng, Q., Zhang, B., Fang, J., Chen, Z.: A bi-level programming for multistage co-expansion planning of the integrated gas and electricity system. Appl. Energy 200, 192–203 (2017)
Ryu, J., Dua, V., Pistikopoulos, E.N.: A bilevel programming framework for enterprise-wide process networks under uncertainty. Comput. Chem. Eng. 28(6–7), 1121–1129 (2004)
Chang, Y., Lee, C.: Machine scheduling with job delivery coordination. Eur. J. Oper. Res. 158(2), 470–487 (2004)
Lejeune, M.A.: A variable neighbourhood decomposition search method for supply chain management planning problems. Eur. J. Oper. Res. 175(2), 959–976 (2006)
Sadigh, A.N., Mozafari, M., Karimi, B.: Manufacturer–retailer supply chain coordination: A bi-level programming approach. Adv. Eng. Softw. 45(1), 144–152 (2012)
Nishi, T., Yoshida, O.: Optimization of multi-period bilevel supply chains under demand uncertainty. Procedia CIRP 41, 508–513 (2016)
Calvete, H.I., Galé, C., Oliveros, M.J.: Bilevel model for production–distribution planning solved by using ant colony optimization. Comput. Oper. Res. 38(1), 320–327 (2011)
Camacho-Vallejo, J.F., Cordero-Franco, Á.E., González-Ramírez, R.G.: Solving the bilevel facility location problem under preferences by a stackelberg-evolutionary algorithm. Math. Probl. Eng. 2014, 430243 (2014). https://doi.org/10.1155/2014/430243
Huang, B., Liu, N.: Bilevel programming approach to optimizing a logistic distribution network with balancing requirements. Transp. Res. Record J. Transp. Res. Board 1894, 188–197 (2004)
Aryanezhad, M.B., Roghanian, E.A.: Bilevel linear multi-objective decision making model with interval coefficients for supply chain coordination. Int. J. Eng. Sci. 19(1–2), 67–74 (2008)
Jianhua, Y.: Analysis on bi-level programming model in supply chain distribution problem. In: 2012 Fifth International Conference on Intelligent Computation Technology and Automation (ICICTA), pp. 94–97. IEEE (2012)
Yang, J., Hao, Z.: The study on supply chain distribution optimization based on bi-level programming model. In: 2009 International Conference on Information Management, Innovation Management and Industrial Engineering, Vol. 3, pp. 7–10. IEEE (2009)
Sun, H.J., Gao, Z.Y.: An optimization model for two-echelon distribution network design in supply chain based on bi-level programming. J. Ind. Eng. Eng. Manag. 1, 017 (2004)
Zhigang, Z., Xinyi, G.: Bi-level programming method for distribution network model in supply chain. Univ. Shanghai Sci. Technol. 28, 300–302 (2006)
Liu, S.T., Kao, C.: Solving fuzzy transportation problems based on extension principle. Eur. J. Oper. Res. 153(3), 661–674 (2004)
Chakraborty, D., Jana, D.K., Roy, T.K.: Arithmetic operations on generalized intuitionistic fuzzy number and its applications to transportation problem. Opsearch 52(3), 431–471 (2015)
Nishad, A.K., Singh, S.R.: Goal programming for solving fractional programming problem in fuzzy environment. Appl. Math. 6(14), 2360 (2015)
Kuwano, H.: On the fuzzy multi-objective linear programming problem: goal programming approach. Fuzzy Sets Syst. 82(1), 57–64 (1996)
Ebrahimnejad, A.: Fuzzy linear programming approach for solving transportation problems with interval-valued trapezoidal fuzzy numbers. Sādhanā 41(3), 299–316 (2016)
Liu, S.T.: Fractional transportation problem with fuzzy parameters. Soft. Comput. 20(9), 3629–3636 (2016)
Abbasbandy, S., Hajjari, T.: A new approach for ranking of trapezoidal fuzzy numbers. Comput. Math Appl. 7(3), 413–419 (2009)