Multi-modality MRI for Alzheimer’s disease detection using deep learning

Latifa Houria1, Noureddine Belkhamsa1, Assia Cherfa1, Yazid Cherfa1
1LASICOM Laboratory, Department of Electronics, Faculty of Technology, University of Blida 1, Blida, Algeria

Tóm tắt

Diffusion tensor imaging (DTI) is a new technology in magnetic resonance imaging, which allows us to observe the insightful structure of the human body in vivo and non-invasively. It identifies the microstructure of white matter (WM) connectivity by estimating the movement of water molecules at each voxel. This makes possible the identification of the damage to WM integrity caused by Alzheimer’s disease (AD) at its early stage, called mild cognitive impairment (MCI). Furthermore, the brain’s gray matter (GM) atrophy characterizes the main structural changes in AD, which can be sensitively detected by structural MRI (sMRI) modality. In this research, we aimed to classify the Alzheimer’s diseases stages by developing a novel multi-modality MRI (DTI and sMRI) fusion strategy to detect WM alterations and GM atrophy in AD patients. The latter is based on a 2-dimensional deep convolutional neural network (CNN) features extractor and a support vector machine (SVM) classifier. The fusion framework consists of merging features extracted from DTI scalar metrics [(fractional anisotropy (FA) and mean diffusivity (MD)], and GM using 2D-CNN and feeding them to SVM to classify AD versus cognitively normal (CN), AD versus MCI, and MCI versus CN. Our novel multimodal AD method demonstrates a superior performance with an accuracy of 99.79%, 99.6%, and 97.00% for AD/CN, AD/MCI, and MCI/CN respectively.

Từ khóa


Tài liệu tham khảo

Patterson C(2018) The state of the art of dementia research: New frontiers. World Alzheimer Report 2018

Fox N, Warrington E, Freeborough P, Hartikainen P, Kennedy A, Stevens J, Rossor MN (1996) Presymptomatic hippocampal atrophy in Alzheimer’s disease: a longitudinal MRI study. Brain 119(6):2001–2007

Pini L, Pievani M, Bocchetta M, Altomare D, Bosco P, Cavedo E, Galluzzi S, Marizzoni M, Frisoni GB (2016) Brain atrophy in Alzheimers disease and aging. Ageing Res Rev 30:25–48

Apostolova LG, Dinov ID, Dutton RA, Hayashi KM, Toga AW, Cummings JL, Thompson PM (2006) 3d comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer’s disease. Brain 129(11):2867–2873

Van de Pol L, Gertz H-J, Scheltens P, Wolf H (2011) Hippocampal atrophy in subcortical vascular dementia. Neurodegener Dis 8(6):465–469

Bell-McGinty S, Lopez OL, Meltzer CC, Scanlon JM, Whyte EM, Dekosky ST, Becker JT (2005) Differential cortical atrophy in subgroups of mild cognitive impairment. Arch Neurol 62(9):1393–1397

Klein-Koerkamp Y, A Heckemann R, T Ramdeen K, Moreaud O, Keignart S, Krainik A, Hammers A, Baciu M, Hot P (2014) Amygdalar atrophy in early Alzheimers disease. Curr Alzheimer Res 11(3):239–252

Ringman JM, O’Neill J, Geschwind D, Medina L, Apostolova LG, Rodriguez Y, Schaffer B, Varpetian A, Tseng B, Ortiz F et al (2007) Diffusion tensor imaging in preclinical and presymptomatic carriers of familial Alzheimer’s disease mutations. Brain 130(7):1767–1776

Medina D, deToledo-Morrell L, Urresta F, Gabrieli JD, Moseley M, Fleischman D, Bennett DA, Leurgans S, Turner DA, Stebbins GT (2006) White matter changes in mild cognitive impairment and ad: a diffusion tensor imaging study. Neurobiol Aging 27(5):663–672

Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1):259–267

Cherubini A, Péran P, Caltagirone C, Sabatini U, Spalletta G (2009) Aging of subcortical nuclei: microstructural, mineralization and atrophy modifications measured in vivo using MRI. Neuroimage 48(1):29–36

Fellgiebel A, Wille P, Müller MJ, Winterer G, Scheurich A, Vucurevic G, Schmidt LG, Stoeter P (2004) Ultrastructural hippocampal and white matter alterations in mild cognitive impairment: a diffusion tensor imaging study. Dement Geriatr Cogn Disord 18(1):101–108

Kantarci K, Avula R, Senjem M, Samikoglu A, Zhang B, Weigand S, Przybelski S, Edmonson H, Vemuri P, Knopman DS et al (2010) Dementia with Lewy bodies and Alzheimer disease: neurodegenerative patterns characterized by DTI. Neurology 74(22):1814–1821

Billeci L, Badolato A, Bachi L, Tonacci A (2020) Machine learning for the classification of Alzheimers disease and its prodromal stage using brain diffusion tensor imaging data: a systematic review. Processes 8(9):1071

Dyrba M, Ewers M, Wegrzyn M, Kilimann I, Plant C, Oswald A, Meindl T, Pievani M, Bokde AL, Fellgiebel A et al (2013) Robust automated detection of microstructural white matter degeneration in Alzheimers disease using machine learning classification of multicenter DTI data. PLoS ONE 8(5):64925

O’Dwyer L, Lamberton F, Bokde AL, Ewers M, Faluyi YO, Tanner C, Mazoyer B, O’Neill D, Bartley M, Collins DR et al (2012) Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment. PLoS ONE 7(2):32441

Lella E, Amoroso N, Bellotti R, Diacono D, La Rocca M, Maggipinto T, Monaco A, Tangaro S (2017) Machine learning for the assessment of Alzheimer’s disease through DTI. Applications of Digital Image Processing XL, vol 10396. SPIE, Bellingham, pp 239–246

Maggipinto T, Bellotti R, Amoroso N, Diacono D, Donvito G, Lella E, Monaco A, Scelsi MA, Tangaro S, Initiative ADN et al (2017) DTI measurements for Alzheimers classification. Phys Med Biol 62(6):2361

Lella E, Pazienza A, Lofù D, Anglani R, Vitulano F (2021) An ensemble learning approach based on diffusion tensor imaging measures for Alzheimers disease classification. Electronics 10(3):249

Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4):1487–1505

Lee G, Fujita H (2020) Deep learning in medical image analysis: challenges and applications, vol 1213. Springer, Cham

Hazarika RA, Abraham A, Sur SN, Maji AK, Kandar D (2021) Different techniques for Alzheimers disease classification using brain images: a study. Int J Multimed Inf Retr 2021:1–20

Wang S-H, Phillips P, Sui Y, Liu B, Yang M, Cheng H (2018) Classification of Alzheimers disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J Med Syst 42(5):1–11

Ashraf A, Naz S, Shirazi SH, Razzak I, Parsad M (2021) Deep transfer learning for Alzheimer neurological disorder detection. Multimed Tools Appl 80(20):30117–30142

Naz S, Ashraf A, Zaib A (2022) Transfer learning using freeze features for Alzheimer neurological disorder detection using Adni dataset. Multimed Syst 28(1):85–94

Maqsood M, Nazir F, Khan U, Aadil F, Jamal H, Mehmood I, Song O-y (2019) Transfer learning assisted classification and detection of Alzheimers disease stages using 3d MRI scans. Sensors 19(11):2645

Mehmood A, Maqsood M, Bashir M, Shuyuan Y (2020) A deep Siamese convolution neural network for multi-class classification of Alzheimer disease. Brain Sci 10(2):84

Savaş S (2022) Detecting the stages of Alzheimers disease with pre-trained deep learning architectures. Arab J Sci Eng 47(2):2201–2218

Mehmood A, Yang S, Feng Z, Wang M, Ahmad AS, Khan R, Maqsood M, Yaqub M (2021) A transfer learning approach for early diagnosis of Alzheimer’s disease on MRI images. Neuroscience 460:43–52

Kang L, Jiang J, Huang J, Zhang T (2020) Identifying early mild cognitive impairment by multi-modality MRI-based deep learning. Front Aging Neurosci 12:206

Jiang J, Kang L, Huang J, Zhang T (2020) Deep learning based mild cognitive impairment diagnosis using structure MR images. Neurosci Lett 730:134971

Eroglu Y, Yildirim M, Cinar A (2022) MRMR-based hybrid convolutional neural network model for classification of Alzheimer’s disease on brain magnetic resonance images. Int J Imaging Syst Technol 32(2):517–527

Massalimova A, Varol H.A (2021) Input agnostic deep learning for alzheimers disease classification using multimodal MRI images. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2875–2878. IEEE

Aderghal K, Afdel K, Benois-Pineau J, Catheline G, Initiative ADN et al (2020) Improving Alzheimer’s stage categorization with convolutional neural network using transfer learning and different magnetic resonance imaging modalities. Heliyon 6(12):05652

Marzban EN, Eldeib AM, Yassine IA, Kadah YM, Initiative ADN (2020) Alzheimers disease diagnosis from diffusion tensor images using convolutional neural networks. PLoS ONE 15(3):0230409

Ahmed OB, Benois-Pineau J, Allard M, Catheline G, Amar CB, Initiative ADN et al (2017) Recognition of Alzheimer’s disease and mild cognitive impairment with multimodal image-derived biomarkers and multiple kernel learning. Neurocomputing 220:98–110

Perez-Gonzalez J, Jiménez-Ángeles L, Saavedra KR, Morales EB, Medina-Bañuelos V, Initiative ADN et al (2021) Mild cognitive impairment classification using combined structural and diffusion imaging biomarkers. Phys Med Biol 66(15):155010

Fang M, Jin Z, Qin F, Peng Y, Jiang C, Pan Z (2022) Re-transfer learning and multi-modal learning assisted early diagnosis of Alzheimers disease. Multimed Tools Appl 2022:1–17

Agostinho D, Caramelo F, Moreira AP, Santana I, Abrunhosa A, Castelo-Branco M (2021) Combined structural MR and diffusion tensor imaging classify the presence of Alzheimers disease with the same performance as MR combined with amyloid positron emission tomography: a data integration approach. Front Neurosci 15:638175

Petersen RC, Aisen P, Beckett LA, Donohue M, Gamst A, Harvey DJ, Jack C, Jagust W, Shaw L, Toga A et al (2010) Alzheimer’s disease neuroimaging initiative (Adni): clinical characterization. Neurology 74(3):201–209

Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE (2011) Statistical parametric mapping: the analysis of functional brain images. Elsevier, Amsterdam

Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) FSL. Neuroimage 62(2):782–790

Cusano C, Ciocca G, Schettini R (2003) Image annotation using SVM. Internet imaging V, vol 5304. SPIE, Bellingham, pp 330–338

Raju M, Gopi VP, Anitha V, Wahid KA (2020) Multi-class diagnosis of Alzheimers disease using cascaded three dimensional-convolutional neural network. Phys Eng Sci Med 43(4):1219–1228

Feng W, Halm-Lutterodt NV, Tang H, Mecum A, Mesregah MK, Ma Y, Li H, Zhang F, Wu Z, Yao E et al (2020) Automated MRI-based deep learning model for detection of Alzheimers disease process. Int J Neural Syst 30(06):2050032

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1