Multi‐method (14C, 36Cl, 234U/230Th) age bracketing of the Tschirgant rock avalanche (Eastern Alps): implications for absolute dating of catastrophic mass‐wasting

Earth Surface Processes and Landforms - Tập 42 Số 7 - Trang 1110-1118 - 2017
Marc Ostermann1, Susan Ivy‐Ochs2, Diethard Sanders1, Christoph Prager3,4
1Institute of Geology, University of Innsbruck, Innsbruck, Austria
2Laboratory of Ion Beam Physics, ETH Zurich, Zurich, Switzerland
3ILF Consulting Engineers Austria GmbH Innsbruck Austria
4alpS GmbH, Innsbruck, Austria

Tóm tắt

AbstractCorrect and precise age determination of prehistorical catastrophic rock‐slope failures prerequisites any hypotheses relating this type of mass wasting to past climatic regimes or palaeo‐seismic records. Despite good exposure, easy accessibility and a long tradition of absolute dating, the age of the 230 million m3 carbonate‐lithic Tschirgant rock avalanche event of the Eastern Alps (Austria) still is relatively poorly constrained. We herein review the age of mass‐wasting based on a total of 17 absolute ages produced with three different methods (14C, 36Cl, 234U/230Th). Chlorine‐36 (36Cl) cosmogenic surface exposure dating of five boulders of the rock avalanche deposit indicates a mean event age of 3.06 ± 0.62 ka. Uranium‐234/thorium‐230 (234U/230Th) dating of soda‐straw stalactites formed in microcaves beneath boulders indicate mean precipitation ages of three individual soda straws at 3.20 ± 0.26 ka, 3.04 ± 0.10 ka and 2.81 ± 0.15 ka; notwithstanding potential internal errors, these ages provide an ‘older‐than’ (ante quam) proxy for mass‐wasting.Based on radiocarbon ages (nine sites) only, it was previously suggested that the present rock avalanche deposit represents two successive failures (3.75 ± 0.19 ka bp, 3.15 ± 0.19 ka bp). There is, however, no evidence for two events neither in surface outcrops nor in LiDAR derived imagery and drill logs. The temporal distribution of all absolute ages (14C, 36Cl, 234U/230Th) also does not necessarily indicate two successive events but suggest that a single catastrophic mass‐wasting took place between 3.4 and 2.4 ka bp. Taking into account the maximum age boundary given by reinterpreted radiocarbon datings and the minimum U/Th‐ages of calcite precipitations within the rock avalanche deposits, a most probable event age of 3.01 ± 0.10 ka bp can be proposed. Our results underscore the difficulty to accurately date catastrophic rock slope failures, but also the potential to increase the accuracy of age determination by combining methods. Copyright © 2016 John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

Abele G, 1974, Bergstürze in den Alpen. Ihre Verbreitung, Morphologie und Folgeerscheinungen, Wissenschaftliche Alpenvereinshefte, 25, 1

Abele G, 1997, Rockslide movement supported by the mobilization of groundwater‐saturated valley floor sediments, Zeitschrift für Geomorphologie N.F., 41, 1, 10.1127/zfg/41/1997/1

10.1016/j.quageo.2009.08.005

10.1016/j.geomorph.2008.08.008

10.1016/j.quageo.2007.12.001

10.1191/095968398666797200

Brandner R., 1980, Geologische und Tektonische Übersichtskarte von Tirol, Tirol‐Atlas, C1, C3

Bronk RC, 2001, Development of the radiocarbon calibration program OxCal, Radiocarbon, 43, 355, 10.1017/S0033822200038212

10.1017/S0033822200033865

10.1017/S0033822200038248

10.1111/j.1365-3121.2007.00743.x

Debaene G, 2003, Uranium‐series dating of marly sediments: application to Jaroszów Fossil lake (Sw Poland), Geochronometria, 22, 15

10.1002/esp.3847

Dufresne A, 2014, Engineering Geology for Society and Territory, 2, 1707

10.1007/978-3-662-04639-5

10.1007/978-1-4020-4037-5_1

10.1016/1359-0189(90)90036-W

Geyh MA, 2001, Reflections on the 230Th/U dating of dirty material, Geochronometria, 20, 9

Geyh MA, 2005, Handbuch der physikalischen und chemischen Altersbestimmung, 211

Gruber A, 2009, Die ‘Butterbichl‐Gleitmasse’ – eine große fossile Massenbewegung am Südrand der Nördlichen Kalkalpen (Tirol, Österreich), Swiss Bulletin für Angewandte Geologie, 14, 103

10.1007/s10346-004-0013-5

Heuberger H, 1975, Das Ötztal. Bergstürze und alte Gletscherstände, kulturgeographische Gliederung, Innsbrucker Geographische Studien, 2, 213

10.1016/j.nimb.2004.04.115

10.1016/j.geomorph.2007.10.024

10.1016/0016-7037(93)90571-D

10.1029/JZ070i016p04039

10.1016/0167-5087(84)90710-5

10.1016/S0169-555X(99)00043-4

Lenhardt W, 2007, Earthquake‐triggered landslides in Austria – Dobratsch revisited, Jahrbuch der Geologischen Bundesanstalt, 147, 193

10.1016/S0040-1951(96)00254-5

10.1016/0016-7037(94)90229-1

10.1016/0016-7037(91)90012-T

10.1126/science.1254702

10.1016/j.geomorph.2015.05.001

Ostermann M, 2012, Landslides and Engineered Slopes. Protecting Society through Improved Understanding, 659

10.1016/j.geomorph.2012.05.006

Ostermann M, 2006, 230Th/234 U ages of calcite cements of the proglacial valley fills of Gamperdona and Bürs (Riss ice age, Vorarlberg, Austria): geological implications, Australian Journal of Earth Sciences, 99, 31

10.1007/s10347-006-0098-5

PagliariniL.2008.Strukturelle Neubearbeitung des Tschirgant und Analyse der lithologisch‐strukturell induzierten Massenbewegung (Tschirgant Bergsturz Nördliche Kalkalpen Tirol) Diploma Thesis University of Innsbruck;90 pp.

Patzelt G, 2012, Die Bergstürze vom Tschirgant und von Haiming, Oberinntal, Tirol – Begleitworte zur Kartenbeilage, Jahrbuch der Geologischen Bundesanstalt, 152, 13

Patzelt G, 2012, Die Bergstürze vom Pletzachkogel, Kramsach, Tirol, Jahrbuch der Geologischen Bundesanstalt, 152, 25

Patzelt G, 1993, Arbeitstagung 1993 Geol. B.‐A., Geologie des Oberinntaler Raumes – Schwerpunkt Blatt 144 Landeck, 206

10.1016/j.geomorph.2007.10.018

Prager C, 2012, Landslides and Engineered Slopes. Protecting Society through Improved Understanding, 895

10.5194/nhess-8-377-2008

10.1016/j.sedgeo.2009.11.007

10.1029/2000JB900181

10.1016/S0016-7037(97)00369-4

10.1016/0016-7037(95)00429-7

10.1007/978-1-4020-4037-5_17

10.1007/s10346-014-0527-4

10.1016/S0168-583X(96)00608-8

10.1016/j.radmeas.2009.05.003

10.1016/j.quascirev.2014.02.015