Multi-marker strategies in heart failure: clinical and statistical approaches

Larry A. Allen1, G. Michael Felker2
1The Division of Cardiology, University of Colorado Denver, Aurora, USA
2Duke Clinical Research Institute, Durham, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95. doi: 10.1067/mcp.2001.113989

Vasan RS (2006) Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation 113:2335–2362. doi: 10.1161/CIRCULATIONAHA.104.482570

Mark DB, Felker GM (2004) B-type natriuretic peptide—a biomarker for all seasons? N Engl J Med 350:718–720. doi: 10.1056/NEJMe038233

Morrow DA, de Lemos JA (2007) Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation 115:949–952. doi: 10.1161/CIRCULATIONAHA.106.683110

Donahue MP, Marchuk DA, Rockman HA (2006) Redefining heart failure: the utility of genomics. J Am Coll Cardiol 48:1289–1298. doi: 10.1016/j.jacc.2006.05.062

Arab S, Gramolini AO, Ping P et al (2006) Cardiovascular proteomics: tools to develop novel biomarkers and potential applications. J Am Coll Cardiol 48:1733–1741. doi: 10.1016/j.jacc.2006.06.063

Braunwald E (2008) Biomarkers in heart failure. N Engl J Med 358:2148–2159. doi: 10.1056/NEJMra0800239

Morrow DA, de Lemos JA, Sabatine MS, Antman EM (2003) The search for a biomarker of cardiac ischemia. Clin Chem 49:537–539. doi: 10.1373/49.4.537

Morrow DA, Braunwald E (2003) Future of biomarkers in acute coronary syndromes: moving toward a multimarker strategy. Circulation 108:250–252. doi: 10.1161/01.CIR.0000078080.37974.D2

Newby LK, Storrow AB, Gibler WB et al (2001) Bedside multimarker testing for risk stratification in chest pain units: The chest pain evaluation by creatine kinase-MB, myoglobin, and troponin I (CHECKMATE) study. Circulation 103:1832–1837

James SK, Lindback J, Tilly J et al (2006) Troponin-T and N-terminal pro-B-type natriuretic peptide predict mortality benefit from coronary revascularization in acute coronary syndromes: a GUSTO-IV substudy. J Am Coll Cardiol 48:1146–1154. doi: 10.1016/j.jacc.2006.05.056

Sabatine MS, Morrow DA, de Lemos JA et al (2002) Multimarker approach to risk stratification in non-ST elevation acute coronary syndromes: simultaneous assessment of troponin I, C-reactive protein, and B-type natriuretic peptide. Circulation 105:1760–1763. doi: 10.1161/01.CIR.0000015464.18023.0A

Westerhout CM, Fu Y, Lauer MS et al (2006) Short- and long-term risk stratification in acute coronary syndromes: the added value of quantitative ST-segment depression and multiple biomarkers. J Am Coll Cardiol 48:939–947. doi: 10.1016/j.jacc.2006.04.085

Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97:1837–1847

Ridker PM, Rifai N, Rose L, Buring JE, Cook N (2002) Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 347:1557–1565. doi: 10.1056/NEJMoa021993

Ralli S, Horwich TB, Fonarow GC (2005) Relationship between anemia, cardiac troponin I, and B-type natriuretic peptide levels and mortality in patients with advanced heart failure. Am Heart J 150:1220–1227. doi: 10.1016/j.ahj.2005.01.049

van Kimmenade RR, Januzzi JL Jr, Baggish AL et al (2006) Amino-terminal pro-brain natriuretic peptide, renal function, and outcomes in acute heart failure: redefining the cardiorenal interaction? J Am Coll Cardiol 48:1621–1627. doi: 10.1016/j.jacc.2006.06.056

Januzzi JL Jr, Peacock WF, Maisel AS et al (2007) Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol 50:607–613. doi: 10.1016/j.jacc.2007.05.014

Rehman SU, Martinez-Rumayor A, Mueller T, Januzzi JL Jr (2008) Independent and incremental prognostic value of multimarker testing in acute dyspnea: results from the ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) study. Clin Chim Acta 392:41–45. doi: 10.1016/j.cca.2008.03.002

van Kimmenade RR, Januzzi JL Jr, Ellinor PT et al (2006) Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol 48:1217–1224. doi: 10.1016/j.jacc.2006.03.061

Anand IS, Rector T, Latini R, Masson S, Maggioni AP, Cohn JN (2006) Do biomarkers add prognostic information to routine measures of the severity of heart failure? J Am Coll Cardiol 47(4A):A66–A67. doi: 10.1016/j.jacc.2005.12.054

Latini R, Masson S, Anand IS et al (2007) Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation 116:1242–1249. doi: 10.1161/CIRCULATIONAHA.106.655076

Diamond GA, Denton TA, Berman DS, Cohen I (1995) Prior restraint: a Bayesian perspective on the optimization of technology utilization for diagnosis of coronary artery disease. The American Journal of Cardiology 76:82–86. doi: 10.1016/S0002-9149(99)80809-1

Maisel AS, Krishnaswamy P, Nowak RM et al (2002) Rapid measurement of b-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 347:161–167. doi: 10.1056/NEJMoa020233

Kattan MW (2003) Judging new markers by their ability to improve predictive accuracy. J Natl Cancer Inst 95:634–635

Cook NR (2007) Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation 115:928–935. doi: 10.1161/CIRCULATIONAHA.106.672402

Baggish AL, Siebert U, Lainchbury JG et al (2006) A validated clinical and biochemical score for the diagnosis of acute heart failure: the ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) Acute Heart Failure Score. Am Heart J 151:48–54. doi: 10.1016/j.ahj.2005.02.031

Zheng Y, Cai T, Feng Z (2006) Application of the time-dependent roc curves for prognostic accuracy with multiple biomarkers. Biometrics 62:279–287. doi: 10.1111/j.1541-0420.2005.00441.x

Heagerty PJ, Zheng Y (2005) Survival model predictive accuracy and ROC curves. Biometrics 61:92–105. doi: 10.1111/j.0006-341X.2005.030814.x

Morrow DA, Antman EM, Charlesworth A et al (2000) TIMI risk score for ST-elevation myocardial infarction: a convenient, bedside, clinical score for risk assessment at presentation: an intravenous nPA for treatment of infarcting myocardium early II trial substudy. Circulation 102:2031–2037

Levy WC, Mozaffarian D, Linker DT et al (2006) The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation 113:1424–1433. doi: 10.1161/CIRCULATIONAHA.105.584102

Felker GM, Leimberger JD, Califf RM et al (2004) Risk stratification after hospitalization for decompensated heart failure. Journal of Cardiac Failure 10:460–466. doi: 10.1016/j.cardfail.2004.02.011

Fonarow GC, Adams KF Jr, Abraham WT, Yancy CW, Boscardin WJ for the Adhere Scientific Advisory Committee Study Group and Investigators (2005) Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. J Am Med Assoc 293:572–580. doi: 10.1001/jama.293.5.572

Aaronson KD, Schwartz JS, Chen TM, Wong KL, Goin JE, Mancini DM (1997) Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation 95:2660–2667

Atienza F, Martinez-Alzamora N, De Velasco JA, Dreiseitl S, Ohno-Machado L (2000) Risk stratification in heart failure using artificial neural networks. Proc AMIA Symp 3:2–6

Ortiz J, Ghefter CG, Silva CE, Sabbatini RM (1995) One-year mortality prognosis in heart failure: a neural network approach based on echocardiographic data. J Am Coll Cardiol 26:1586–1593. doi: 10.1016/0735-1097(95)00385-1

Penny W, Frost D (1996) Neural networks in clinical medicine. Med Decis Making 16:386–398. doi: 10.1177/0272989X9601600409

Goodman E, Dolan LM, Morrison JA, Daniels SR (2005) Factor analysis of clustered cardiovascular risks in adolescence: obesity is the predominant correlate of risk among youth. Circulation 111:1970–1977. doi: 10.1161/01.CIR.0000161957.34198.2B