Multi-layer competitive-cooperative framework for performance enhancement of differential evolution

Information Sciences - Tập 482 - Trang 86-104 - 2019
Sheng Xin Zhang1,2, Li Ming Zheng3, Kit Sang Tang2, Shao Yong Zheng1, Wing Shing Chan2
1School of Electronics and Information Technology, Sun Yat-sen University, No.132 Waihuan East Road, Higher Education Mega Centre, Guangzhou 510006, China
2Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
3Department of Electronic Engineering, School of Information Science and Technology, Jinan University, Guangzhou 510632, China

Tài liệu tham khảo

Awad, 2017, CADE: a hybridization of Cultural Algorithm and Differential Evolution for numerical optimization, Inf. Sci., 378, 215, 10.1016/j.ins.2016.10.039 Al-Dabbagh, 2018, Algorithmic design issues in adaptive differential evolution schemes: Review and taxonomy, Swarm Evol. Comput., 43, 284, 10.1016/j.swevo.2018.03.008 Awad, 2016 Brest, 2006, Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems, IEEE Trans. Evol. Comput., 10, 646, 10.1109/TEVC.2006.872133 Cai, 2015, Differential evolution with hybrid linkage crossover, Inf. Sci., 320, 244, 10.1016/j.ins.2015.05.026 Cui, 2016, Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations, Comput. Oper. Res., 67, 155, 10.1016/j.cor.2015.09.006 Das, 2011, Differential evolution: a survey of the state-of-the-art, IEEE Trans. Evol. Comput., 15, 4, 10.1109/TEVC.2010.2059031 Das, 2016, Recent advances in differential evolution–an updated survey, Swarm Evol. Comput., 27, 1, 10.1016/j.swevo.2016.01.004 Draa, 2015, A sinusoidal differential evolution algorithm for numerical optimization, Appl. Soft Comput., 27, 99, 10.1016/j.asoc.2014.11.003 Guo, 2015, Enhancing differential evolution utilizing eigenvector-based crossover operator, IEEE Trans. Evol. Comput., 19, 31, 10.1109/TEVC.2013.2297160 García, 2009, A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability, Soft Comput., 13, 959, 10.1007/s00500-008-0392-y Gong, 2013, Differential evolution with ranking-based mutation operators, IEEE Trans. Cybernet., 43, 2066, 10.1109/TCYB.2013.2239988 Gong, 2015, A multi-operator search strategy based on cheap surrogate models for evolutionary optimization, IEEE Trans. Evol. Comput., 19, 746, 10.1109/TEVC.2015.2449293 Herrera, 1998, Tackling real-coded genetic algorithms: Operators and tools for behavioral analysis, Artif. Intell. Rev., 12, 265, 10.1023/A:1006504901164 Hansen, 2001, Completely derandomized self-adaptation in evolution strategies, Evol. Comput, 9, 159, 10.1162/106365601750190398 Iacca, 2014, Multi-strategy coevolving aging particle optimization, Int. J. Neur. Syst., 24, 10.1142/S0129065714500087 Kämpf, 2009, A hybrid CMA-ES and HDE optimisation algorithm with application to solar energy potential, Appl. Soft Comput., 9, 738, 10.1016/j.asoc.2008.09.009 Liang, 2013 Li, 2014, Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 18, 114, 10.1109/TEVC.2013.2239648 Li, 2011, Multi-objective differential evolution with adaptive control of parameters and operators, 6683, 473 Li, 2016, A novel hybrid differential evolution algorithm with modified CoDE and JADE, Appl. Soft Comput., 47, 577, 10.1016/j.asoc.2016.06.011 Mallipeddi, 2011, Differential evolution algorithm with ensemble of parameters and mutation strategies, Appl. Soft Comput., 11, 1679, 10.1016/j.asoc.2010.04.024 Noman, 2008, Accelerating differential evolution using an adaptive local search, IEEE Trans. Evol. Comput., 12, 107, 10.1109/TEVC.2007.895272 Neri, 2010, Recent advances in differential evolution: a survey and experimental analysis, Artif. Intell. Rev., 33, 61, 10.1007/s10462-009-9137-2 Peng, 2010, Population-based algorithm portfolios for numerical optimization, IEEE Trans. Evol. Comput., 14, 782, 10.1109/TEVC.2010.2040183 Piotrowski, 2017, Review of differential evolution population size, Swarm Evol. Comput., 32, 1, 10.1016/j.swevo.2016.05.003 Piotrowski, 2013, Adaptive memetic differential evolution with global and local neighborhood-based mutation operators, Inf. Sci., 241, 164, 10.1016/j.ins.2013.03.060 Poláková, 2015, Cooperation of optimization algorithms: a simple hierarchical model, 1046 Qin, 2009, Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Trans. Evol. Comput., 13, 398, 10.1109/TEVC.2008.927706 Storn, 1995 Sabar, 2017, Heterogeneous cooperative co-evolution memetic differential evolution algorithms for big data optimisation problems, IEEE Trans. Evol. Comput., 21, 315, 10.1109/TEVC.2016.2602860 Sheskin, 2003 Tanabe, 2013, Success-history based parameter adaptation for differential evolution, 71 Tanabe, 2014, Improving the search performance of SHADE using linear population size reduction, 1658 Tanabe, 2017, How far are we from an optimal, adaptive DE?, 145 Tang, 2015, Differential evolution with an individual-dependent mechanism, IEEE Trans. Evol. Comput., 19, 560, 10.1109/TEVC.2014.2360890 Vrugt, 2009, Self-adaptive multimethod search for global optimization in real-parameter spaces, IEEE Trans. Evol. Comput., 13, 243, 10.1109/TEVC.2008.924428 Wang, 2011, Differential evolution with composite trial vector generation strategies and control parameters, IEEE Trans. Evol. Comput., 15, 55, 10.1109/TEVC.2010.2087271 Wang, 2014, Differential evolution based on covariance matrix learning and bimodal distribution parameter setting, Appl. Soft Comput., 18, 232, 10.1016/j.asoc.2014.01.038 Wang, 2012, Enhancing the search ability of differential evolution through orthogonal crossover, Inf. Sci., 185, 153, 10.1016/j.ins.2011.09.001 Wolpert, 1997, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1, 67, 10.1109/4235.585893 Weber, 2011, A study on scale factor in distributed differential evolution, Inf. Sci., 181, 2488, 10.1016/j.ins.2011.02.008 Weber, 2009, Distributed differential evolution with explorative–exploitative population families, Genet. Programm. Evolvable Mach., 10, 343, 10.1007/s10710-009-9089-y Wu, 2016, Differential evolution with multi-population based ensemble of mutation strategies, Inf. Sci., 329, 329, 10.1016/j.ins.2015.09.009 S.X. Zhang, W.S. Chan, Z.K. Peng, S.Y. Zheng, and K.S. Tang, Selective-Candidate Framework with Similarity Selection Rule for Evolutionary Optimization, arXiv: 1712.06338 (2017). [Online]. Available: https://arxiv.org/abs/1712.06338. Zhang, 2009, JADE: adaptive differential evolution with optional external archive, IEEE Trans. Evol. Comput., 13, 945, 10.1109/TEVC.2009.2014613 Zheng, 2017, Differential evolution powered by collective information, Inf. Sci., 399, 13, 10.1016/j.ins.2017.02.055 Zheng, 2016, Differential evolution algorithm with two-step subpopulation strategy and its application in microwave circuit designs, IEEE Trans. Ind. Inf., 12, 911, 10.1109/TII.2016.2535347 Zhan, 2009, Adaptive particle swarm optimization, IEEE Trans. Syst. Man Cybern. B, 39, 1362, 10.1109/TSMCB.2009.2015956 Zhang, 2017, Decomposition-based multi-objective evolutionary algorithm with mating neighborhood sizes and reproduction operators adaptation, Soft Comput., 21, 6381, 10.1007/s00500-016-2196-9