Multi-layer competitive-cooperative framework for performance enhancement of differential evolution
Tài liệu tham khảo
Awad, 2017, CADE: a hybridization of Cultural Algorithm and Differential Evolution for numerical optimization, Inf. Sci., 378, 215, 10.1016/j.ins.2016.10.039
Al-Dabbagh, 2018, Algorithmic design issues in adaptive differential evolution schemes: Review and taxonomy, Swarm Evol. Comput., 43, 284, 10.1016/j.swevo.2018.03.008
Awad, 2016
Brest, 2006, Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems, IEEE Trans. Evol. Comput., 10, 646, 10.1109/TEVC.2006.872133
Cai, 2015, Differential evolution with hybrid linkage crossover, Inf. Sci., 320, 244, 10.1016/j.ins.2015.05.026
Cui, 2016, Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations, Comput. Oper. Res., 67, 155, 10.1016/j.cor.2015.09.006
Das, 2011, Differential evolution: a survey of the state-of-the-art, IEEE Trans. Evol. Comput., 15, 4, 10.1109/TEVC.2010.2059031
Das, 2016, Recent advances in differential evolution–an updated survey, Swarm Evol. Comput., 27, 1, 10.1016/j.swevo.2016.01.004
Draa, 2015, A sinusoidal differential evolution algorithm for numerical optimization, Appl. Soft Comput., 27, 99, 10.1016/j.asoc.2014.11.003
Guo, 2015, Enhancing differential evolution utilizing eigenvector-based crossover operator, IEEE Trans. Evol. Comput., 19, 31, 10.1109/TEVC.2013.2297160
García, 2009, A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability, Soft Comput., 13, 959, 10.1007/s00500-008-0392-y
Gong, 2013, Differential evolution with ranking-based mutation operators, IEEE Trans. Cybernet., 43, 2066, 10.1109/TCYB.2013.2239988
Gong, 2015, A multi-operator search strategy based on cheap surrogate models for evolutionary optimization, IEEE Trans. Evol. Comput., 19, 746, 10.1109/TEVC.2015.2449293
Herrera, 1998, Tackling real-coded genetic algorithms: Operators and tools for behavioral analysis, Artif. Intell. Rev., 12, 265, 10.1023/A:1006504901164
Hansen, 2001, Completely derandomized self-adaptation in evolution strategies, Evol. Comput, 9, 159, 10.1162/106365601750190398
Iacca, 2014, Multi-strategy coevolving aging particle optimization, Int. J. Neur. Syst., 24, 10.1142/S0129065714500087
Kämpf, 2009, A hybrid CMA-ES and HDE optimisation algorithm with application to solar energy potential, Appl. Soft Comput., 9, 738, 10.1016/j.asoc.2008.09.009
Liang, 2013
Li, 2014, Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 18, 114, 10.1109/TEVC.2013.2239648
Li, 2011, Multi-objective differential evolution with adaptive control of parameters and operators, 6683, 473
Li, 2016, A novel hybrid differential evolution algorithm with modified CoDE and JADE, Appl. Soft Comput., 47, 577, 10.1016/j.asoc.2016.06.011
Mallipeddi, 2011, Differential evolution algorithm with ensemble of parameters and mutation strategies, Appl. Soft Comput., 11, 1679, 10.1016/j.asoc.2010.04.024
Noman, 2008, Accelerating differential evolution using an adaptive local search, IEEE Trans. Evol. Comput., 12, 107, 10.1109/TEVC.2007.895272
Neri, 2010, Recent advances in differential evolution: a survey and experimental analysis, Artif. Intell. Rev., 33, 61, 10.1007/s10462-009-9137-2
Peng, 2010, Population-based algorithm portfolios for numerical optimization, IEEE Trans. Evol. Comput., 14, 782, 10.1109/TEVC.2010.2040183
Piotrowski, 2017, Review of differential evolution population size, Swarm Evol. Comput., 32, 1, 10.1016/j.swevo.2016.05.003
Piotrowski, 2013, Adaptive memetic differential evolution with global and local neighborhood-based mutation operators, Inf. Sci., 241, 164, 10.1016/j.ins.2013.03.060
Poláková, 2015, Cooperation of optimization algorithms: a simple hierarchical model, 1046
Qin, 2009, Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Trans. Evol. Comput., 13, 398, 10.1109/TEVC.2008.927706
Storn, 1995
Sabar, 2017, Heterogeneous cooperative co-evolution memetic differential evolution algorithms for big data optimisation problems, IEEE Trans. Evol. Comput., 21, 315, 10.1109/TEVC.2016.2602860
Sheskin, 2003
Tanabe, 2013, Success-history based parameter adaptation for differential evolution, 71
Tanabe, 2014, Improving the search performance of SHADE using linear population size reduction, 1658
Tanabe, 2017, How far are we from an optimal, adaptive DE?, 145
Tang, 2015, Differential evolution with an individual-dependent mechanism, IEEE Trans. Evol. Comput., 19, 560, 10.1109/TEVC.2014.2360890
Vrugt, 2009, Self-adaptive multimethod search for global optimization in real-parameter spaces, IEEE Trans. Evol. Comput., 13, 243, 10.1109/TEVC.2008.924428
Wang, 2011, Differential evolution with composite trial vector generation strategies and control parameters, IEEE Trans. Evol. Comput., 15, 55, 10.1109/TEVC.2010.2087271
Wang, 2014, Differential evolution based on covariance matrix learning and bimodal distribution parameter setting, Appl. Soft Comput., 18, 232, 10.1016/j.asoc.2014.01.038
Wang, 2012, Enhancing the search ability of differential evolution through orthogonal crossover, Inf. Sci., 185, 153, 10.1016/j.ins.2011.09.001
Wolpert, 1997, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1, 67, 10.1109/4235.585893
Weber, 2011, A study on scale factor in distributed differential evolution, Inf. Sci., 181, 2488, 10.1016/j.ins.2011.02.008
Weber, 2009, Distributed differential evolution with explorative–exploitative population families, Genet. Programm. Evolvable Mach., 10, 343, 10.1007/s10710-009-9089-y
Wu, 2016, Differential evolution with multi-population based ensemble of mutation strategies, Inf. Sci., 329, 329, 10.1016/j.ins.2015.09.009
S.X. Zhang, W.S. Chan, Z.K. Peng, S.Y. Zheng, and K.S. Tang, Selective-Candidate Framework with Similarity Selection Rule for Evolutionary Optimization, arXiv: 1712.06338 (2017). [Online]. Available: https://arxiv.org/abs/1712.06338.
Zhang, 2009, JADE: adaptive differential evolution with optional external archive, IEEE Trans. Evol. Comput., 13, 945, 10.1109/TEVC.2009.2014613
Zheng, 2017, Differential evolution powered by collective information, Inf. Sci., 399, 13, 10.1016/j.ins.2017.02.055
Zheng, 2016, Differential evolution algorithm with two-step subpopulation strategy and its application in microwave circuit designs, IEEE Trans. Ind. Inf., 12, 911, 10.1109/TII.2016.2535347
Zhan, 2009, Adaptive particle swarm optimization, IEEE Trans. Syst. Man Cybern. B, 39, 1362, 10.1109/TSMCB.2009.2015956
Zhang, 2017, Decomposition-based multi-objective evolutionary algorithm with mating neighborhood sizes and reproduction operators adaptation, Soft Comput., 21, 6381, 10.1007/s00500-016-2196-9