Multi-fidelity meta-modeling for reservoir engineering - application to history matching

Arthur Thenon1, Véronique Gervais1, M. Le Ravalec1
1IFP Energies Nouvelles, Rueil-Malmaison, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ankenman, B., Nelson, B. L., Staum, J.: Stochastic kriging for simulation metamodeling. Oper. Res. 58(2), 371–382 (2010). doi: 10.1287/opre.1090.0754

Busby, D.: Hierarchical adaptive experimental design for Gaussian process emulators. Reliab. Eng. Syst. Safe. 94(7), 1183–1193 (2009). doi: 10.1016/j.ress.2008.07.007

Cardwell Jr., W. T., Parsons, R. L.: Average permeabilities of heterogeneous oil sands. Society of Petroleum Engineers (1945). doi: 10.2118/945034-G

Chilès, J., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty. Wiley, New York (1999)

Craig, P. S., Goldstein, M., Seheult, A. H., Smith, J. A.: Constructing partial prior specifications for models of complex physical systems. J. Roy. Stat. Soc. D-Sta. 47(1), 37–53 (1998). doi: 10.1111/1467-9884.00115

Da Veiga, S., Gervais, V.: Uncertainty analysis and history matching on grid responses from a reduced-basis approach. In: Paper Presented at the EAGE Annual Conference and Exhibition, Madrid, Spain. doi: 10.3997/2214-4609.201413035 (2015)

Douarche, F., Da Veiga, S., Feraille, M., Enchry, G., Touzani, S., Barsalou, R.: Sensitivity analysis and optimization of Surfactant-Polymer flooding under uncertainties. Oil Gas Sci. Technol. 69(4), 603–617 (2014). doi: 10.2516/ogst/2013166

Eide, A. L., Holden, L., Reiso, E., Aanonsen, S. I.: Automatic history matching by use of response surfaces and experimental design. In: Paper presented at ECMOR IV - 4th European Conference on the Mathematics of Oil Recovery, Rrøs, Norway. doi: 10.3997/2214-4609.201411186 (1994)

Fang, K. -T., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments. Chapman and Hall/CRC, Boca Raton (2005)

Feraille, M.: An optimization strategy based on the maximization of Matching-Targets’ probability for unevaluated results. Oil Gas Sci. Technol. 68, 545–556 (2013). doi: 10.2516/ogst/2012079

Feraille, M., Marrel, A.: Prediction under uncertainty on a mature field. Oil Gas Sci. Technol. 67, 193–206 (2012). doi: 10.2516/ogst/2011172

Floris, F. J. T., Bush, M. D., Cuypers, M., Roggero, F., Syversveen, A. -R.: Methods for quantifying the uncertainty of production forecasts: a comparative study. Petrol. Geosci. 7, S87–S96 (2001). doi: 10.1144/petgeo.7.S.S87

Forrester, A. I. J., Keane, A. J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45, 50–79 (2009). doi: 10.1016/j.paerosci.2008.11.001

Forrester, A. I. J., Sóbester, A., Keane, A. J.: Multi-fidelity optimization via surrogate modelling. P. Roy. Soc. A-Math. Phy. 463, 3251–3269 (2007). doi: 10.1098/rspa.2007.1900

Huang, D., Allen, T. T., Notz, W. I., Miller, R. A.: Sequential kriging optimization using multiple-fidelity evaluations. Struct. Multidiscip. O. 32(5), 369–382 (2006). doi: 10.1007/s00158-005-0587-0

Jones, D.: A taxonomy of global optimization methods based on response surfaces. J. Global Optim. 21(4), 345–383 (2001). doi: 10.1023/A:1012771025575

Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of expensive Black-Box functions. J. Global Optim. 13(4), 455–492 (1998). doi: 10.1023/A:1008306431147

Journel, A. G., Deutsch, C. V.: GSLIB Geostatistical Software Library and Users Guide, 2nd edn. Oxford University Press, New York (1998)

Kennedy, M., O’Hagan, A.: Predicting the output from a complex computer code when fast approximations are available. Biometrika 87, 1–13 (2000). doi: 10.1093/biomet/87.1.1

Kuya, Y., Takeda, K., Zhang, X., Forrester, A. I. J.: Multifidelity surrogate modeling of experimental and computational aerodynamic data sets. AIAA J. 49, 289–298 (2011). doi: 10.2514/1.J050384

Le Gratiet, L.: Bayesian analysis of hierarchical multifidelity codes. SIAM/ASA Journal on Uncertainty Quantification 1, 244–269 (2013). doi: 10.1137/120884122

Le Gratiet, L.: Multi-fidelity Gaussian Process Regression for Computer Experiments. PhD dissertation, University of Paris-Diderot, Paris VII (2013)

Le Gratiet, L.: Muficokriging: multi-fidelity co-kriging models. R package version 1.2 (2014)

Le Gratiet, L., Cannamela, C.: Cokriging-Based Sequential design strategies using fast cross-validation techniques for multi-fidelity computer codes. Technometrics 57(3), 418–427 (2015). doi: 10.1080/00401706.2014.928233

Le Ravalec, M.: Optimizing well placement with quality maps derived from multi-fidelity meta-models. In: Paper Presented at the EAGE Annual Conference & Exhibition, Copenhagen, Denmark. doi: 10.2118/154416-MS (2012)

Le Ravalec, M., Noetinger, B., Hu, L.: The FFT moving average (FFT-MA) generator: an efficient numerical method for generating and conditioning gaussian simulations. Math. Geol. 32, 701–723 (2000). doi: 10.1023/A:1007542406333

Loève, M.: Probability Theory, vol. I–II. Springer, New York (1978)

Mardia, K. V., Marshall, R. J.: Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 71(1), 135–146 (1984)

Marrel, A., Iooss, B., Laurent, B., Roustant, O.: Calculations of Sobol indices for the Gaussian process metamodel. Reliab. Eng. Syst. Safe. 94, 742–751 (2009). doi: 10.1016/j.ress.2008.07.008

Marrel, A., Perot, N., Mottet, C.: Development of a surrogate model and sensitivity analysis for spatio-temporal numerical simulators. Stoch. Env. Res. Risk A. 29, 959–974 (2015). doi: 10.1007/s00477-014-0927-y

Matérn, B.: Spatial Variation. Springer, New York (1986)

Mckay, M. D., Beckman, R. J., Conover, W. J.: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979). doi: 10.2307/1268522

Qian, P. Z. G., Wu, C. F. J.: Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments. Technometrics 50, 192–204 (2008). doi: 10.1198/004017008000000082

Roustant, O., Ginsbourger, D., Deville, Y.: Dicekriging, DiceOptim: two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization. J. Stat. Softw. 51(1), 1–55 (2012). doi: 10.18637/jss.v051.i01

Sacks, J., Welch, W. J., Mitchell, T. J., Wynn, H. P.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–423 (1989). doi: 10.1214/ss/1177012413

Santner, T. J., Williams, B. J., Notz, W.: The Design and Analysis of Computer Experiments. Springer, New York (2003)

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Tarantola, S.: Global Sensitivity Analysis: the Primer. Wiley, Chichester (2008)

Scheidt, C., Zabalza-Mezghani, I., Feraille, M., Collombier, D.: Toward a reliable quantification of uncertainty on production forecasts : adaptive experimental design. Oil Gas Sci. Technol. 62, 207–224 (2007). doi: 10.2516/ogst:2007018

Sobol’, I. Y. M.: On sensitivity estimation for nonlinear mathematical models. Matematicheskoe Modelirovanie 2(1), 112–118 (1990)

Wackernagel, H.: Multivariate Geostatistics: an Introduction with Applications. Springer, Berlin (2003)

Xiao, M., Breitkopf, P., Coelho, R. F., Knopf-Lenoir, C., Sidorkiewicz, M., Villon, P.: Model reduction by CPOD and Kriging. Struct. Multidiscip. O. 41(4), 555–574 (2010). doi: 10.1007/s00158-009-0434-9

Yeten, B., Castellini, A., Guyaguler, B., Chen, W. H.: a comparison study on experimental design and response surface methodologies. In: Paper SPE 93347 presented at SPE Reservoir Simulation Symposium, Houston, Texas, USA, 31 January–2 February. doi: 10.2118/93347-MS (2005)

Zubarev, D. I.: Pros and Cons of Applying Proxy-models as a Substitute for Full Reservoir Simulations. doi: 10.2118/124815-MS (2009)

PUNQ-S3 webpage: https://www.imperial.ac.uk/engineering/departments/earth-science/research/research-groups/perm/standard-models/ https://www.imperial.ac.uk/engineering/departments/earth-science/research/research-groups/perm/standard-models/