Multi-criteria optimization classifier using fuzzification, kernel and penalty factors for predicting protein interaction hot spots
Tài liệu tham khảo
Akbani, 2004, Applying support vector machines to imbalanced datasets, vol. 3201, 39
Berman, 2000, The protein data bank, Nucleic Acids Res., 28, 235, 10.1093/nar/28.1.235
Bernstein, 1978, The protein data bank: a computer-based archival file for macromolecular structures, Arch. Biochem. Biophys., 185, 584, 10.1016/0003-9861(78)90204-7
Bogan, 1998, Anatomy of hot spots in protein interfaces, J. Mol. Biol., 280, 1, 10.1006/jmbi.1998.1843
Boser, 1992, A training algorithm for optimal margin classifiers, 144
Chatterjee, 2011, PPI_SVM: Prediction of protein–protein interactions using machine learning, domain–domain affinities and frequency tables, Cell. Mol. Biol. Lett., 16, 264, 10.2478/s11658-011-0008-x
Chen, 2011, Prediction of protein interaction hot spots using rough set-based multiple criteria linear programming, J. Theor. Biol., 269, 174, 10.1016/j.jtbi.2010.10.021
Cho, 2009, A feature-based approach to modeling protein–protein interaction hot spots, Nucleic Acids Res., 37, 2672, 10.1093/nar/gkp132
Clackson, 1995, A hot spot of binding energy in a hormone receptor interface, Science, 267, 383, 10.1126/science.7529940
Cristianini, 2000
Daisuke, 2003, Fuzzy least squares support vector machines for multiclass problems, Neural Netw., 16, 785
Darnell, 2007, An automated decision-tree approach to predicting protein interaction hot spots, Proteins, 68, 813, 10.1002/prot.21474
DeLano, 2002, Unraveling hot spots in binding interfaces: progress and challenges, Curr. Opin. Struct. Biol., 12, 14, 10.1016/S0959-440X(02)00283-X
Ding, 2007, Prediction of protein structure classes with pseudo amino acid composition and fuzzy support vector machine network, Protein Pept. Lett., 14, 811, 10.2174/092986607781483778
Fariselli, 2004, A neural network method to improve prediction of protein–protein interaction sites in heterocomplexes, Neural Netw. Sign. Process., 33
Freed, 1981, Simple but powerful goal programming models for discriminant problems, Eur. J. Oper. Res., 7, 44, 10.1016/0377-2217(81)90048-5
Fu, 2004
Glover, 1990, Improved linear programming models for discriminant analysis, Decision Sci., 21, 771, 10.1111/j.1540-5915.1990.tb01249.x
Guo, 2008, Using support vector machine combined with auto covariance to predict protein–protein interactions from protein sequences, Nucleic Acids Res., 36, 3025, 10.1093/nar/gkn159
He, 2004, Classifications of credit cardholder behavior by using fuzzy linear programming, Int. J. Inf. Technol. Decis. Mak., 3, 633, 10.1142/S021962200400129X
Hu, 2000, Conservation of polar residues as hot spots at protein interfaces, Proteins, 39, 331, 10.1002/(SICI)1097-0134(20000601)39:4<331::AID-PROT60>3.0.CO;2-A
Jansen, 2003, A Bayesian networks approach for predicting protein–protein interactions from genomic data, Science, 302, 449, 10.1126/science.1087361
Jiang, 2006, Fuzzy SVM with a new fuzzy membership function, Neural Comput. Appl., 15, 268, 10.1007/s00521-006-0028-z
Koknar-Tezel, 2009, Improving SVM classification on imbalanced data sets in distance space, Data Mining, 2009, 259
Kortemme, 2002, A simple physical model for binding energy hot spots in protein–protein complexes, Proc. Natl. Acad. Sci. U.S.A., 99, 14116, 10.1073/pnas.202485799
Li, 2008, MCLP-based methods for improving “bad” catching rate in credit cardholder behavior analysis, Appl. Soft Comput., 8, 1259, 10.1016/j.asoc.2007.02.014
Li, 2004, Protein–protein interactions: hot spots and structurally conserved residues often locate in complemented pockets that pre-organized in the unbound states: implications for docking, J. Mol. Biol., 344, 781, 10.1016/j.jmb.2004.09.051
Lin, 2002, Fuzzy support vector machines, IEEE Trans. Neural Netw., 13, 464, 10.1109/72.991432
Lin, 2005, Granular computing and rough sets, an incremental development, 535
Hamel, 2009
Ma, 2003, Protein–protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces, Proc. Natl. Acad. Sci. U.S.A., 100, 5772, 10.1073/pnas.1030237100
Ofran, 2007, Protein–protein interaction hot spots carved into sequences, PLoS Comput. Biol., 3, e119, 10.1371/journal.pcbi.0030119
Reyes, 2009
Peng, 2008, Multi-criteria convex quadratic programming model for credit data analysis, Decis. Support Syst., 1016, 10.1016/j.dss.2007.12.001
Roman, 2003, Rough set methods in feature selection and recognition, Pattern Recogn. Lett., 24, 833, 10.1016/S0167-8655(02)00196-4
Schierz, 2009, Virtual screening of bioassay data. Smart Technology Research Centre, Bournemouth University, Talbot Campus, Poole, Dorset, BH12 5BB, UK, J. Cheminform., 1
Shi, 2001, Data mining in credit card portfolio management: a multiple criteria decision making approach, 427
Shi, 2002, Data mining via multiple criteria linear programming: applications in credit card portfolio management, Int. J. Inf. Technol. Decis. Mak., 1, 131, 10.1142/S0219622002000038
Shi, 2010, Multiple criteria optimization based data mining methods and applications: a systematic survey, Knowl. Inf. Syst., 24, 369, 10.1007/s10115-009-0268-1
Shigeo, 2004, Fuzzy LP-SVMs for multiclass problems, 429
Singh, 2012, Machine learning classifiers for human protein function prediction, Int. J. Comput. Sci. Telecommun., 3, 21
Smola, 1999, 158
Takuya, 2001, Fuzzy support vector machines for pattern classification, 1449
Tang, 2002, SVMs modeling for highly imbalanced classification, J. LATEX Class Files, 1, 1
Tovar, 2008, 220
Vapnik, 2000
Xia, 2006, Feature selection using fuzzy support vector machines, Fuzzy Optim. Decis. Mak., 5, 187, 10.1007/s10700-006-7336-8
Yang, 2008, 636
Zeng, 2009, 389
Zhai, 2006, Knowledge acquisition and uncertainty in fault diagonsis, 359
Zhang, 2010, Yong Shi: multiple criteria programming models for VIP E-Mail behavior analysis, Web Intell. Agent Syst., 8, 69, 10.3233/WIA-2010-0180
Zhang, 2010, Kernel-based multiple criteria linear programming classifier, Procedia Comput. Sci., 1, 2401
Zhang, 2009, An effective classification approach based on fuzzy set and multiple criteria linear programming, J. Data Anal. (Chung-hwa Data Mining Soc.), 4, 105
Zhang, 2009, A rough set-based multiple criteria linear programming approach for the medical diagnosis and prognosis, Int. J. Expert Syst. Appl., 36, 8932, 10.1016/j.eswa.2008.11.007