Multi-color LUCAS: Lensfree On-chip Cytometry Using Tunable Monochromatic Illumination and Digital Noise Reduction

Sungkyu Seo1, Ting‐Wei Su1, Anthony Erlinger1
1Electrical Eng. Dept., University of California, Los Angeles, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Burger, D. E. and Gershman, R. J. Acousto-optic laser-scanning cytometer. Cytometry 9:101–110, 1988

Cui, X., Lee, L. P., Heng, X., Zhong, W., Sternberg, P. W., Psaltis, D. and Yang C., Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. PNAS, 105, 10670, 2008

Darzynkiewicz, Z., Elzbieta, B., Li, X., Gorczyca, W., and Melamed, M. R. Laser-scanning cytometry: a new instrumentation with many applications. Exp. Cell Res. 249:1–12, 1999

Fraser, S. I., and A. R. Allen. A speckle reduction algorithm using the ‘a trous’ wavelet transform. In: Proceedings of the IASTED International Conference on Visualization, Imaging and Image Processing (ACTA 2001), pp. 313–318, 2001.

Garcia-Sucerquia, J., Xu, W., Jericho, S. K., Jericho, M. H., Tamblyn I., and Kreuzer H. J. Digital in-line holograhic microscopy. Appl. Optics 45, 836–850, 2006

Harwood, D., Subbarao, M., Hakalahti, H., and Davis, L. A new class of edge-preserving smoothing filters. Pattern Recognit. Lett. 6:155–162, 1987

Heng, X., D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang. Optofluidic microscopy: a method for implementing high resolution optical microscope on a chip. Lab Chip 6:1274–1276, 2006.

Hulett, H. R., Bonner, W. A., Sweet, R. G., and Herzenberg, L. A. Development and application of a rapid cell sorter. Clin. Chem. 19:813–816, 1973

Kamentsky, L. A., Burger, D. E., Gershman, R. J., Kamentsky, L. D., and Luther, E. Slide-based laser scanning cytometry. Acta Cytol. 41:123–143, 1997

Kuan, D. T., Sawchuk, A. A., Strand, T. C., and Chavel, P. Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans. Pattern Anal. Mach. Intell. 7:165–177, 1985

Lee, J. S. Speckle analysis and smoothing of synthetic aperture radar images. Comput. Graph. Image Process. 17:24–32, 1981

Lim, S. J. Two-dimensional Signal and Image Processing. Englewood Cliffs: Prentice Hall, 1990

Lopes, A., Touzi, R., and Nesby, E. Adaptive speckle filters and scene heterogeneity. IEEE Trans. Geosci. Remote Sens. 28:992–1000, 1990

Nieminen, A., Heinonen, P., and Neuvo, Y. A new class of detail-preserving filters for image processing. IEEE Trans. Pattern Anal. Mach. Intell. 9:74–90, 1987

Ozcan, A., Bilenca, A., Desjardin, A. E., Bouma, B. E., and Tearney, G. J. Speckle reduction in optical coherence tomography images using digital filtering. J. Opt. Soc. Am. A 24:1901–1910, 2007

Ozcan, A. and Demirci, U. Ultra wide-field lens-free monitoring of cells on-chip. Lab Chip 8:98–106, 2008

Psaltis D., Quake S., and Yang C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381, 2006

Saleh, B. E. A. and Teich, M. C. Fundamentals of Photonics. Hoboken: Wiley-Interscience, 2007

Starck, J. L., Murtagh, F., and Bijaoui, A. Image Processing and Data Analysis; the Multiscale Approach. Cambridge: Cambridge University Press, 1998

Weber, M. J. Handbook of Optical Materials (2nd edn.). Boca Raton: CRC Press, 2003