Multi-class tumor classification by discriminant partial least squares using microarray gene expression data and assessment of classification models
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ambroise, 2002, Selection bias in gene extraction on the basis of microarray gene-expression data, Proc. Natl. Acad. Sci. USA, 99, 6562, 10.1073/pnas.102102699
Bicciato, 2003, PCA disjoint models for multiclass cancer a analysis using gene expression data, Bioinformatics, 19, 571, 10.1093/bioinformatics/btg051
Cramer, 1988, Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins, J. Am. Chem. Soc., 110, 5959, 10.1021/ja00226a005
Efron, 1983, Estimating the error rate of a prediction rule: improvement on cross-validation, J. Am. Stat. Assoc., 78, 316, 10.2307/2288636
Furey, 2000, Support vector machine classification and validation of cancer tissue samples using microarray expression data, Bioinformatics, 16, 906, 10.1093/bioinformatics/16.10.906
Golub, 1999, Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, Science, 286, 531, 10.1126/science.286.5439.531
Gottfries, 1995, Diagnosis of dementias using partial least squares discrimination analysis, Dementia, 6, 83
Hedenfalk, 2001, Gene-expression profiles in hereditary breast cancer, N. Engl. J. Med., 344, 539, 10.1056/NEJM200102223440801
Huang, 2003, Linear regression and two-class classification with gene expression data, Bioinformatics, 19, 2072, 10.1093/bioinformatics/btg283
Khan, 2001, Classification and diagnostic prediction of cancers using expression profiling and artificial neural networks, Nat. Med., 7, 673, 10.1038/89044
Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI, Montreal, Canada.
Manne, 1987, Analysis of two partial-least-squares algorihms for multivariate calibration, Chem. Intell. Lab. Sys., 2, 187, 10.1016/0169-7439(87)80096-5
Nguyen, 2002, Tumor classification by partial least squares using microarray gene expression data, Bioinformatics, 18, 39, 10.1093/bioinformatics/18.1.39
Nguyen, 2002, Multi-class cancer classification via partial least squares with gene expression profiles, Bioinformatics, 18, 1216, 10.1093/bioinformatics/18.9.1216
Ntzani, 2003, Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment, Lancet, 362, 1439, 10.1016/S0140-6736(03)14686-7
Park, 2002, Linking gene expression data with patient survival times using partial least squares, Bioinformatics, 18, S120, 10.1093/bioinformatics/18.suppl_1.S120
Ross, 2000, Systematic variation in gene expression patterns in human cancer cell lines, Nat. Genet., 24, 227, 10.1038/73432
Scherf, 2000, A gene expression database for the molecular pharmacology of cancer, Nat. Genet., 24, 236, 10.1038/73439
Shi, 2001, Arrays, molecular diagnostics, personalized therapy and informatics, Expert Rev. Mol. Diagn., 1, 363, 10.1586/14737159.1.4.363
Simon, 2003, Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification, J. Natl. Cancer Inst., 95, 14, 10.1093/jnci/95.1.14
Sjöström, M., Wold, S., Söderström, B., 1986. PLS discriminant plots. In: Proceedings of PARC in Practice. Elsevier, North-Holland, pp. 461–470.
Song, 1999, Pattern recognition of soil samples based on the microbial fatty acid contents, Environ. Sci. Technol., 33, 3524, 10.1021/es990405n
Ståhle, 1987, Partial least squares ananlysis with cross-validation for the two-class problem: a Monte Carlo study, J. Chemom., 1, 185, 10.1002/cem.1180010306
Stephanopoulos, 2002, Mapping physiological states from microarray expression measurements, Bioinformatics, 18, 1054, 10.1093/bioinformatics/18.8.1054
Tusher, 2001, Significance analysis of microarrays applied to the ionizing radiation response, Proc. Natl. Acad. Sci. USA, 98, 5116, 10.1073/pnas.091062498
Wold, 1984, The collinearity problem in linear regression, the partial least squares approach to generalized inverse, SIAM J. Sci. Stat. Comput., 5, 735, 10.1137/0905052
Wold, 2001, PLS-regression: a basic tool of chemometrics, Chemom. Intell. Lab. Sys., 58, 109, 10.1016/S0169-7439(01)00155-1