Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: Implications for wound healing

Acta Biomaterialia - Tập 39 - Trang 146-155 - 2016
Dae Woong Song1, Shin Hwan Kim2, Hyung Hwan Kim1, Ki Hoon Lee1, Chang‐Seok Ki1, Young Hwan Park3,1,4
1Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
2Product Tech Transfer Team, Ajinomoto Genexine Corporation, Incheon 21991, Republic of Korea
3Center for Food and Bioconvergence, Seoul National University, Seoul, 08826 Republic of Korea
4Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sen, 2009, Human skin wounds: a major and snowballing threat to public health and the economy, Wound Repair Regen., 17, 763, 10.1111/j.1524-475X.2009.00543.x

Edwards, 2004, Bacteria and wound healing, Curr. Opin. Infect. Dis., 17, 91, 10.1097/00001432-200404000-00004

Siedenbiedel, 2012, Antimicrobial polymers in solution and on surfaces: overview and functional principles, Polymers, 4, 46, 10.3390/polym4010046

Mogosanu, 2014, Natural and synthetic polymers for wounds and burns dressing, Int. J. Pharm., 463, 127, 10.1016/j.ijpharm.2013.12.015

Abrigo, 2014, Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects, Macromol. Biosci., 14, 772, 10.1002/mabi.201300561

Vepari, 2007, Silk as a biomaterial, Prog. Polym. Sci., 32, 991, 10.1016/j.progpolymsci.2007.05.013

Murphy, 2009, Biomedical applications of chemically-modified silk fibroin, J. Mater. Chem., 19, 6443, 10.1039/b905802h

Gil, 2013, Functionalized silk biomaterials for wound healing, Adv. Healthc. Mater., 2, 206, 10.1002/adhm.201200192

Wang, 2009, Enzyme immobilization on electrospun polymer nanofibers: an overview, J. Mol. Catal. B-Enzym., 56, 189, 10.1016/j.molcatb.2008.05.005

Kaur, 2014, Facts and myths of antibacterial properties of silk, Biopolymers, 101, 237, 10.1002/bip.22323

Nikaido, 2009, Multidrug resistance in bacteria, Annu. Rev. Biochem., 78, 119, 10.1146/annurev.biochem.78.082907.145923

Thorsteinsson, 2003, Soft antimicrobial agents: synthesis and activity of labile environmentally friendly long chain quaternary ammonium compounds, J. Med. Chem., 46, 4173, 10.1021/jm030829z

Atiyeh, 2007, Effect of silver on burn wound infection control and healing: review of the literature, Burns, 33, 139, 10.1016/j.burns.2006.06.010

Kong, 2010, Antimicrobial properties of chitosan and mode of action: a state of the art review, Int. J. Food Microbiol., 144, 51, 10.1016/j.ijfoodmicro.2010.09.012

Mooney, 2006, Silver dressings, Plast. Reconstr. Surg., 117, 666, 10.1097/01.prs.0000200786.14017.3a

Loh, 2010, Uptake and cytotoxicity of chitosan nanoparticles in human liver cells, Toxicol. Appl. Pharmacol., 249, 148, 10.1016/j.taap.2010.08.029

Poon, 2004, In vitro cytotoxicity of silver: implication for clinical wound care, Burns, 30, 140, 10.1016/j.burns.2003.09.030

Park, 2011, The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles, Biomaterials, 32, 9810, 10.1016/j.biomaterials.2011.08.085

Hancock, 2006, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies, Nat. Biotechnol., 24, 1551, 10.1038/nbt1267

Zasloff, 2002, Antimicrobial peptides of multicellular organisms, Nature, 415, 389, 10.1038/415389a

Parisien, 2008, Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides, J. Appl. Microbiol., 104, 1

Cleveland, 2001, Bacteriocins: safe, natural antimicrobials for food preservation, Int. J. Food Microbiol., 71, 1, 10.1016/S0168-1605(01)00560-8

Fox, 2013, Antimicrobial peptides stage a comeback, Nat. Biotechnol., 31, 379, 10.1038/nbt.2572

Wang, 2008, Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles, J. Biol. Chem., 283, 32637, 10.1074/jbc.M805533200

Jacob, 2013, Short KR-12 analogs designed from human cathelicidin LL-37 possessing both antimicrobial and antiendotoxic activities without mammalian cell toxicity, J. Pept. Sci., 19, 700, 10.1002/psc.2552

Mishra, 2013, Structural location determines functional roles of the basic amino acids of KR-12, the smallest antimicrobial peptide from human cathelicidin LL-37, RSC Adv., 3, 19560, 10.1039/c3ra42599a

Vandamme, 2012, A comprehensive summary of LL-37, the factotum human cathelicidin peptide, Cell. Immunol., 280, 22, 10.1016/j.cellimm.2012.11.009

Rosenfeld, 2006, Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defense peptides. Peptide properties and plausible modes of action, J. Biol. Chem., 281, 1636, 10.1074/jbc.M504327200

Mookherjee, 2006, Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37, J. Immunol., 176, 2455, 10.4049/jimmunol.176.4.2455

Tjabringa, 2003, The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor, J. Immunol., 171, 6690, 10.4049/jimmunol.171.12.6690

Heilborn, 2003, The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium, J. Invest. Dermatol., 120, 379, 10.1046/j.1523-1747.2003.12069.x

Tokumaru, 2005, Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37, J. Immunol., 175, 4662, 10.4049/jimmunol.175.7.4662

Shaykhiev, 2005, Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure, Am. J. Physiol. Lung Cell. Mol. Physiol., 289, L842, 10.1152/ajplung.00286.2004

Akiyama, 2014, The human cathelicidin LL-37 host defense peptide upregulates tight junction-related proteins and increases human epidermal keratinocyte barrier function, J. Innate Immun., 6, 739, 10.1159/000362789

Carretero, 2008, In vitro and in vivo wound healing-promoting activities of human cathelicidin LL-37, J. Invest. Dermatol., 128, 223, 10.1038/sj.jid.5701043

Ramos, 2011, Wound healing activity of the human antimicrobial peptide LL37, Peptides, 32, 1469, 10.1016/j.peptides.2011.06.005

Maher, 2006, Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro, Biochem. Pharmacol., 71, 1289, 10.1016/j.bcp.2006.01.012

Han, 2011, Antimicrobial peptides derived from different animals: comparative studies of antimicrobial properties, cytotoxicity and mechanism of action, World J. Microbiol. Biotechnol., 27, 1847, 10.1007/s11274-010-0643-9

Bacalum, 2015, Cationic antimicrobial peptides cytotoxicity on mammalian cells: an analysis using therapeutic index integrative concept, Int. J. Pept. Res. Ther., 21, 47, 10.1007/s10989-014-9430-z

Gronberg, 2011, Stability of the cathelicidin peptide LL-37 in a non-healing wound environment, Acta Derm. Venereol., 91, 511, 10.2340/00015555-1102

Li, 2014, Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties, Acta Biomater., 10, 258, 10.1016/j.actbio.2013.09.009

Mishra, 2014, Site specific immobilization of a potent antimicrobial peptide onto silicone catheters: evaluation against urinary tract infection pathogens, J. Mater. Chem. B, 2, 1706, 10.1039/c3tb21300e

Lim, 2015, Development of a catheter functionalized by a polydopamine peptide coating with antimicrobial and antibiofilm properties, Acta Biomater., 15, 127, 10.1016/j.actbio.2014.12.015

Gao, 2011, The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides, Biomaterials, 32, 3899, 10.1016/j.biomaterials.2011.02.013

Holmberg, 2013, Bio-inspired stable antimicrobial peptide coatings for dental applications, Acta Biomater., 9, 8224, 10.1016/j.actbio.2013.06.017

Lin, 2015, Multi-biofunctionalization of a titanium surface with a mixture of peptides to achieve excellent antimicrobial activity and biocompatibility, J. Mater. Chem. B, 3, 30, 10.1039/C4TB01318B

Tan, 2014, Effectiveness of antimicrobial peptide immobilization for preventing perioperative cornea implant-associated bacterial infection, Antimicrob. Agents Chemother., 58, 5229, 10.1128/AAC.02859-14

Pedrosa, 2014, Comparison of the antibacterial activity of modified-cotton with magainin I and LL-37 with potential as wound-dressings, 131

Gomes, 2015, Incorporation of antimicrobial peptides on functionalized cotton gauzes for medical applications, Carbohydr. Polym., 127, 451, 10.1016/j.carbpol.2015.03.089

Heunis, 2013, Evaluation of a nisin-eluting nanofiber scaffold to treat Staphylococcus aureus-induced skin infections in mice, Antimicrob. Agents Chemother., 57, 3928, 10.1128/AAC.00622-13

Rapsch, 2014, Identification of antimicrobial peptides and immobilization strategy suitable for a covalent surface coating with biocompatible properties, Bioconjug. Chem., 25, 308, 10.1021/bc4004469

Bai, 2008, Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide, Appl. Surf. Sci., 254, 2988, 10.1016/j.apsusc.2007.10.049

Gabriel, 2006, Preparation of LL-37-grafted titanium surfaces with bactericidal activity, Bioconjug. Chem., 17, 548, 10.1021/bc050091v

Hilpert, 2009, Screening and characterization of surface-tethered cationic peptides for antimicrobial activity, Chem. Biol., 16, 58, 10.1016/j.chembiol.2008.11.006

Bagheri, 2009, Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum, Antimicrob. Agents Chemother., 53, 1132, 10.1128/AAC.01254-08

Dong, 2012, Structure-function relationship of antimicrobial peptide cathelicidin Pc-CATH1, Nat. Prod. Bioprospect., 2, 81, 10.1007/s13659-012-0016-1

Tossi, 2000, Amphipathic, α-helical antimicrobial peptides, Biopolymers, 55, 4, 10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M

Zhang, 2002, MAPK signal pathways in the regulation of cell proliferation in mammalian cells, Cell Res., 12, 9, 10.1038/sj.cr.7290105

Efimova, 2003, A regulatory role for p38 delta MAPK in keratinocyte differentiation. Evidence for p38 delta-ERK1/2 complex formation, 278, 34277

Sharma, 2003, P38 and ERK1/2 coordinate cellular migration and proliferation in epithelial wound healing: evidence of cross-talk activation between MAP kinase cascades, J. Biol. Chem., 278, 21989, 10.1074/jbc.M302650200