Multi-analyte approach for determining the extraction of tobacco constituents from pouched snus by consumers during use

Helena Digard1, Nathan Gale1, Graham Errington1, Nicola Peters1, Kevin McAdam1
1Group R&D, British American Tobacco (Investments) Ltd., Southampton, SO15 8TL, United Kingdom

Tóm tắt

Abstract Background Snus is a smokeless oral tobacco product with a significant history of use in Sweden, where it is regulated under food legislation. Users place a small porous sachet or a pinch of loose snus between the upper jaw and cheek for approximately one hour, leading to partial intake of tobacco constituents. To understand user exposure to tobacco, a multi-analyte approach based on the extraction of pouches by methanol, ethanol and water was validated and applied to the measurement of various constituents, including nicotine, four tobacco-specific nitrosamines (TSNAs), propylene glycol, water, ammonium, nitrate, sodium, chloride, linalool, citronellol, linalyl acetate and geraniol, extracted from snus pouches during use by human consumers. Results After validation against established single-analyte methods, the multi-analyte approach was used to determine constituent levels in snus pouches before and after one hour of use. Although the concentrations in the snus pouches varied from nanogram (e.g. TSNAs) to milligram (e.g. nicotine, sodium and propylene glycol) quantities (25.1 ng to 35.3 mg per 1 g pouch), the mean percentage extracted varied only from 19.2% for linalyl acetate to 37.8% for the TSNA 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) among all constituents analyzed. The TSNAs, some of which are known carcinogens, showed the highest percentage extraction (range 34.6%–37.8%). Measurement variability was low for all analytes, ranging from 2.4% (total TSNAs, NAT) to 9.5% (geraniol). By contrast, inter-subject variability ranged from 6.7% (NAB) to 52.2% (linalyl acetate), and was greater than 20% for eight of the constituents analyzed. Intra-subject variability ranged from 3.4% (citronellol) to 29.7% (geraniol). Conclusions Generally, less than a third of each constituent tested was extracted during one hour of snus use, independent of constituent concentration. The variable nature of in-use extraction was shown to be driven by inter-subject variability. The results provide insight into possible mechanisms controlling constituent extraction in the mouth during snus use, and provide reference data for the development of in-vitro laboratory systems for estimating extraction of tobacco constituents from snus.

Từ khóa


Tài liệu tham khảo

Who, IARC Working Group on the Evaluation of Carcinogenic Risks to Humans: Smokeless tobacco and some tobacco-specific N-nitrosamines. IARC Monogr Eval Carcinog Risks Hum. 2007, 89: 55-60.

Royal College of Physicians, Tobacco Advisory Group: Harm Reduction in Nicotine Addiction: Helping People Who Can’t Quit. 2007, London: RCP

Rodgman A, Perfetti T: The Chemical Components of Tobacco and Tobacco Smoke. 2009, Boca Raton, FL: CRC Press, 1259-

Hecht S: Recommendations from the Tobacco Product Constituents Subcommittee, 2010. 2010, : US Food and Drug Administration, http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/TobaccoProductsScientificAdvisoryCommittee/UCM224807.pdf,

Office of Science in the Center for Tobacco Products at the US Food and Drug Administration: Harmful and Potentially Harmful Constituents in Tobacco Products and Tobacco Smoke: Established List. 2012, US Food and Drug Administration, http://www.fda.gov/TobaccoProducts/GuidanceComplianceRegulatoryInformation/ucm297786.htm,

Office of Science in the Center for Tobacco Products at the US Food and Drug Administration: Reporting Harmful and Potentially Harmful Constituents in Tobacco Products and Tobacco Smoke Under Section 904(a)(3) of the Federal Food, Drug, and Cosmetic Act: Guidance for Industry, 2012. 2012, US Food and Drug Administration, http://www.fda.gov/TobaccoProducts/GuidanceComplianceRegulatoryInformation/ucm297752.htm,

Digard H, Errington G, Richter A, McAdam K: Patterns and behaviors of snus consumption in Sweden. Nicotine Tob Res. 2009, 11: 1175-1181. 10.1093/ntr/ntp118.

Digard H, Proctor C, Kulasekaran A, Malmqvist U, Richter A: Determination of nicotine absorption from multiple tobacco products and nicotine gum. Nicotine Tob Res. 2013, 15: 255-261. 10.1093/ntr/nts123.

Hecht S, Carmella S, Murphy S, Riley W, Le C, Luo X, Mooney M, Hatsukami D: Similar exposure to a tobacco-specific carcinogen in smokeless tobacco users and cigarette smokers. Cancer Epidemiol Biomarkers Prev. 2007, 16: 1567-1572. 10.1158/1055-9965.EPI-07-0227.

Lunell E, Lunell M: Steady-state nicotine plasma levels following use of four different types of Swedish snus compared with 2-mg Nicorette chewing gum: a crossover study. Nicotine Tob Res. 2005, 7: 397-403. 10.1080/14622200500125468.

Pappas R, Stanfill S, Watson C, Ashley D: Analysis of toxic metals in commercial moist snuff and Alaskan iqmik. J Anal Toxicol. 2008, 32: 281-291.

Andersson G, Bjornberg G, Curvall M: Oral mucosal changes and nicotine disposition in users of Swedish smokeless tobacco products: a comparative study. J Oral Pathol Med. 1994, 23: 161-167. 10.1111/j.1600-0714.1994.tb01106.x.

Lunell E, Curvall M: Nicotine delivery and subjective effects of Swedish portion snus compared with 4 mg nicotine polacrilex chewing gum. Nicotine Tob Res. 2011, 13: 573-578. 10.1093/ntr/ntr044.

Caraway J, Chen P: Assessment of mouth-level exposure to tobacco constituents in US snus consumers. Nicotine Tob Res. 2012, 10.1093/ntr/nts187. [online early access],Published Online: September 18, 2012

Bardow A, Madsen J, Nauntofte B: The bicarbonate concentration in human saliva does not exceed the plasma level under normal physiological conditions. Clin Oral Investig. 2000, 4: 245-253. 10.1007/s007840000077.

Lunell E, Lunell M: In-vivo extraction of lead, cadmium and tobacco specific nitrosamines from four brands of Swedish snus in regular snus users [abstract]. 2005, Presented at 11th Annual Meeting and 7th Annual European Conference of the Society for Research on Nicotine and Tobacco, Prague, Czech Republic, March 20–23, 2005; Rapid Communications Poster Abstract RP-076. http://www.srnt.org/conferences/abstracts/pdfs/2005_Abstracts.pdf

Calpena A, Clares B, Fernandez F: Technological, biopharmaceutical and pharmacokinetic advances: new formulations of application on the skin and oral mucosa. Recent Advances in Pharmaceutical Sciences. Edited by: Munoz-Torrero D. 2011, Kerala, India: Transworld Research Network, 175-198.

Siegel I: Permeability of the oral mucosa. The Structure and Function of Oral Mucosai. Edited by: Meyer J, Squier C, Gerson S. 1984, Oxford, UK: Pergamon Press, 95-108.

Taebunpakul S, Liu C, Wright C, McAdam K, Heroult J, Braybrook J, Goenaga-Infante H: Determination of total arsenic and arsenic speciation in tobacco products: from tobacco leaf and cigarette smoke. J Anal At Spectrom. 2011, 26: 1633-1640. 10.1039/c0ja00268b.

SRC Inc Interactive PhysProp Database Demo. http://www.syrres.com/what-we-do/databaseforms.aspx?id=386/,

Royal Society of Chemistry ChemSpider. http://www.chemspider.com/,

Williamson J, Digard H, Richter A, McAdam K: Development of a laboratory based analysis system for measurement of snus constituent extraction by users. Presented at the 2009 Joint Conference of the Society for Research on Nicotine and Tobacco (SRNT) and SRNT-Europe, Saggart, Republic of Ireland, April 27–30, 2009; Poster POS3-35. 2009