Multi-Task Learning for Abstractive and Extractive Summarization
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv:1409.0473
Boulanger-Lewandowski N, Bengio Y, Vincent P (2013) Audio chord recognition with recurrent neural networks. In: ISMIR, pp 335–340
Cao Z, Luo C, Li W, Li S (2017) Joint copying and restricted generation for paraphrase. In: AAAI, pp 3152–3158
Cao Z, Wei F, Li S, Li W, Zhou M, Wang H (2015) Learning summary prior representation for extractive summarization. In: ACL, vol 2, pp 829–833
Chen Q, Zhu X, Ling Z, Wei S, Jiang H (2016) Distraction-based neural networks for document summarization. arXiv:1610.08462
Cheung JCK, Penn G (2014) Unsupervised sentence enhancement for automatic summarization. In: EMNLP, pp 775–786
Choi E, Hewlett D, Uszkoreit J, Polosukhin I, Lacoste A, Berant J (2017) Coarse-to-fine question answering for long documents. In: Proceedings of the 55th annual meeting of the association for computational linguistics (volume 1: long papers), vol 1, pp 209–220
Chopra S, Auli M, Rush AM (2016) Abstractive sentence summarization with attentive recurrent neural networks. In: Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: human language technologies, pp 93–98
Collobert R, Weston J (2008) A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th international conference on Machine learning, ACM, pp 160–167
Deng L, Hinton G, Kingsbury B (2013) New types of deep neural network learning for speech recognition and related applications: an overview. In: 2013 IEEE international conference on acoustics, speech and signal processing, IEEE, pp 8599–8603
Dong D, Wu H, He W, Yu D, Wang H (2015) Multi-task learning for multiple language translation. In: Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (volume 1: long papers), vol 1, pp 1723–1732
Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12:2121–2159
Erkan G, Radev DR (2004) Lexrank: graph-based lexical centrality as salience in text summarization. J Artif Intell Res 22:457–479
Fang Y, Zhu H, Muszynska E, Kuhnle A, Teufel S (2016) A proposition-based abstractive summarizer
Gerani S, Mehdad Y, Carenini G, Ng RT, Nejat B (2014) Abstractive summarization of product reviews using discourse structure. In: EMNLP, vol 14, pp 1602–1613
Girshick R (2015) Fast R-CNN. In: Proceedings of the IEEE international conference on computer vision, pp 1440–1448
Graves A (2012) Sequence transduction with recurrent neural networks. arXiv:1211.3711
Gu J, Lu Z, Li H, Li VO (2016) Incorporating copying mechanism in sequence-to-sequence learning. arXiv:1603.06393
Hermann KM, Kocisky T, Grefenstette E, Espeholt L, Kay W, Suleyman M, Blunsom P (2015) Teaching machines to read and comprehend. In: Advances in neural information processing systems, pp 1693–1701
Johnson M, Schuster M, Le QV, Krikun M, Wu Y, Chen Z, Thorat N, Viégas F, Wattenberg M, Corrado G et al (2017) Google’s multilingual neural machine translation system: enabling zero-shot translation. Trans Assoc Comput Linguist 5:339–351
Li J, Luong MT, Jurafsky D (2015) A hierarchical neural autoencoder for paragraphs and documents. arXiv:1506.01057
Lin CY (2004) Rouge: a package for automatic evaluation of summaries. In: Text summarization branches out: proceedings of the ACL-04 workshop, Barcelona, Spain, vol 8
Liu F, Flanigan J, Thomson S, Sadeh N, Smith NA (2015) Toward abstractive summarization using semantic representations
Liu L, Lu Y, Yang M, Qu Q, Zhu J, Li H (2018) Generative adversarial network for abstractive text summarization. In: Thirty-second AAAI conference on artificial intelligence
Lopyrev K (2015) Generating news headlines with recurrent neural networks. arXiv:1512.01712
Luong MT, Le QV, Sutskever I, Vinyals O, Kaiser L (2015) Multi-task sequence to sequence learning. arXiv:1511.06114
Luong MT, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine translation. arXiv:1508.04025
Mihalcea R, Tarau P (2004) Textrank: Bringing order into texts. In: Lin D, Wu D (eds) Proceedings of EMNLP 2004, Association for Computational Linguistics, Barcelona, Spain, pp 404–411
Nallapati R, Zhai F, Zhou B (2017) Summarunner: a recurrent neural network based sequence model for extractive summarization of documents. hiP (yi= 1—hi, si, d) 1:1
Nallapati R, Zhou B, Gulcehre C, Xiang B et al (2016) Abstractive text summarization using sequence-to-sequence RNNS and beyond. arXiv:1602.06023
Niehues J, Cho E (2017) Exploiting linguistic resources for neural machine translation using multi-task learning. arXiv:1708.00993
Paulus R, Xiong C, Socher R (2017) A deep reinforced model for abstractive summarization. arXiv:1705.04304
Peng H, Thomson S, Smith NA (2017) Deep multitask learning for semantic dependency parsing. arXiv:1704.06855
Rush AM, Chopra S, Weston J (2015) A neural attention model for abstractive sentence summarization. arXiv:1509.00685
See A, Liu PJ, Manning CD (2017) Get to the point: summarization with pointer-generator networks. arXiv:1704.04368
Søgaard A, Goldberg Y (2016) Deep multi-task learning with low level tasks supervised at lower layers. In: Proceedings of the 54th annual meeting of the association for computational linguistics (volume 2: short papers), vol 2, pp 231–235
Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Advances in neural information processing systems, pp 3104–3112
Tan J, Wan X, Xiao J (2017) Abstractive document summarization with a graph-based attentional neural model. In: Proceedings of the 55th annual meeting of the association for computational linguistics (volume 1: long papers), vol 1, pp 1171–1181
Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K et al (2016) Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv:1609.08144
Wu S, Zhang D, Yang N, Li M, Zhou M (2017) Sequence-to-dependency neural machine translation. In: Proceedings of the 55th annual meeting of the association for computational linguistics (volume 1: long papers), vol 1, pp 698–707
Yang Z, Yang D, Dyer C, He X, Smola AJ, Hovy EH (2016) Hierarchical attention networks for document classification. In: HLT-NAACL, pp 1480–1489
Zhang J, Yao J, Wan X (2016) Towards constructing sports news from live text commentary. In: Proceedings of the 54th annual meeting of the association for computational linguistics (volume 1: long papers), Association for Computational Linguistics, Berlin, Germany, pp 1361–1371. http://www.aclweb.org/anthology/P16-1129