Multi-Scale Modeling and Experimental Study of the Strength of Plain-Woven SiC/SiC Composites
Tóm tắt
The strength of plain-woven SiC/SiC composites was predicted with the multi-scale method. Firstly, a three-dimensional unit cell was used to characterize the geometric structure of plain-woven SiC/SiC composites. Secondly, the yarns were seen as minicomposites, whose axial mechanical properties were obtained by the shear-lag model, and the fiber defect model was adopted to simulate the failure process of minicomposites. The strength of plain-woven SiC/SiC composites predicted with the multi-scale method is in good agreement with the experimental result. Besides, the effects of heat treatment and load-carrying capacity of broken fiber on the strength of plain-woven SiC/SiC composites were evaluated, and the effect of woven geometry structure was also evaluated.
Tài liệu tham khảo
Yin, X.W., Cheng, L.F., Zhang, L.T., Travitzky, N., Greil, P.: Fibre-reinforced multifunctional SiC matrix composite materials. Int. Mater. Rev. 62(3), 117–172 (2017). https://doi.org/10.1080/09506608.2016.1213939
Meyer, P., Waas, A.M.: FEM predictions of damage in continous fiber ceramic matrix composites under transverse tension using the crack band method. Acta Mater. 102, 292–303 (2016). https://doi.org/10.1016/j.actamat.2015.09.002
Gao, X.G., Zhang, S., Fang, G.W., Song, Y.D.: Distribution of slip regions on the fiber-matrix interface of ceramic matrix composites under arbitrary loading. J. Reinf. Plast. Compos. 34(20), 1713–1723 (2015). https://doi.org/10.1177/0731684415596596
Curtin, W.A.: Theory of mechanical properties of ceramic-matrix composites. J. Am. Ceram. Soc. 74(11), 2837–2845 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06852.x
Curtin, W.A.: Ultimate strengths of fibre-reinforced ceramics and metals. Composites. 24(2), 98–102 (1993). https://doi.org/10.1016/0010-4361(93)90005-s
Keith, W.P., Kedward, K.T.: The stress-strain behaviour of a porous unidirectional ceramic matrix composite. Composites. 26(3), 163–174 (1995). https://doi.org/10.1016/0010-4361(95)91379-j
Pryce, A.W., Smith, P.A.: Matrix cracking in unidirectional ceramic matrix composites under quasi-static and cycle loading. Acta Metall. Mater. 41(4), 1269–1281 (1993). https://doi.org/10.1016/0956-7151(93)90178-u
Curtin, W.A., Ahn, B.K., Takeda, N.: Modeling brittle and tough stress-strain behavior in unidirectional ceramic matrix composites. Acta Mater. 46(10), 3409–3420 (1998). https://doi.org/10.1016/s1359-6454(98)00041-x
Yang, C.P., Jia, F., Wang, B., Huang, T., Jiao, G.Q.: Unified tensile model for unidirectional ceramic matrix composites with degraded fibers and interface. J. Eur. Ceram. Soc. 39(2–3), 222–228 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.09.006
Aubard, X., Lamon, J., Allix, O.: Model of the nonlinear mechanical behavior of 2D SiC-SiC chemical vapor infiltration composites. J. Am. Ceram. Soc. 77(8), 2118–2126 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb07106.x
Fagiano, C., Genet, M., Baranger, E., Ladeveze, P.: Computational geometrical and mechanical modeling of woven ceramic composites at the mesoscale. Compos. Struct. 112, 146–156 (2014). https://doi.org/10.1016/j.compstruct.2014.01.045
Ismar, H., Schroter, F., Streicher, F.: Modeling and numerical simulation of the mechanical behavior of woven SiC/SiC regarding a three-dimensional unit cell. Comput. Mater. Sci. 19(1–4), 320–328 (2000). https://doi.org/10.1016/s0927-0256(00)00170-1
Jacobsen, T.K., Brondsted, P.: Mechanical properties of two plain-woven chemical vapor infiltrated silicon carbide-matrix composites. J. Am. Ceram. Soc. 84(5), 1043–1051 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00788.x
Yang, C.P., Jiao, G.Q., Wang, B., Huang, T., Guo, H.B.: Damage-based failure theory and its application to 2D-C/SiC composites. Compos. Pt. A-Appl. Sci. Manuf. 77, 181–187 (2015). https://doi.org/10.1016/j.compositesa.2015.07.003
Araki, H., Suzuki, H., Yang, W., Sato, S., Noda, T.: Effect of high temperature heat treatment in vacuum on microstructure and bending properties of SiCf/SiC composites prepared by CVI. J. Nucl. Mater. 258, 1540–1545 (1998). https://doi.org/10.1016/s0022-3115(98)00293-1
Zhang, S., Gao, X.G., Song, Y.D.: In situ strength model for continuous fibers and multi-scale modeling the fracture of C/SiC composites. Appl. Compos. Mater. 26(1), 357–370 (2019). https://doi.org/10.1007/s10443-018-9696-y
Zhang, S., Gao, X.G., Dong, H.N., Ju, X.R., Song, Y.D.: In situ modulus and strength of carbon fibers in C/SiC composites. Ceram. Int. 43(9), 6885–6890 (2017). https://doi.org/10.1016/j.ceramint.2017.02.109
Zhang, S., Gao, X., Chen, J., Dong, H., Song, Y., Zhang, H.: Effects of micro-damage on the nonlinear constitutive behavior of SiC/SiC Minicomposites. J. Ceram. Sci. Technol. 7(4), 341–347 (2016). https://doi.org/10.4416/jcst2016-00040
Xia, Z.H., Zhou, C.W., Yong, Q.L., Wang, X.W.: On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int. J. Solids Struct. 43(2), 266–278 (2006). https://doi.org/10.1016/j.ijsolstr.2005.03.055
Gowayed, Y., Ojard, G., Santhosh, U., Jefferson, G.: Modeling of crack density in ceramic matrix composites. J. Compos. Mater. 49(18), 2285–2294 (2015). https://doi.org/10.1177/0021998314545188