Multi-Objective Bayesian Global Optimization using expected hypervolume improvement gradient

Swarm and Evolutionary Computation - Tập 44 - Trang 945-956 - 2019
Kaifeng Yang1, Michael Emmerich1, André Deutz1, Thomas Bäck1
1LIACS, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Jin, 2011, Surrogate-assisted evolutionary computation: recent advances and future challenges, Swarm Evol. Comput., 1, 61, 10.1016/j.swevo.2011.05.001

Močkus, 1975, 400

Jones, 1998, Efficient global optimization of expensive black-box functions, J. Global Optim., 13, 455, 10.1023/A:1008306431147

Emmerich, 2005

Couckuyt, 2014, Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization, J. Global Optim., 60, 575, 10.1007/s10898-013-0118-2

Yang, 2015, Expected hypervolume improvement algorithm for PID controller tuning and the multiobjective dynamical control of a biogas plant, 1934

Luo, 2014, Kriging model based many-objective optimization with efficient calculation of expected hypervolume improvement, 1187

Shimoyama, 2013, Kriging-surrogate-based optimization considering expected hypervolume improvement in non-constrained many-objective test problems, 658

Emmerich, 2006, Single-and multiobjective evolutionary optimization assisted by Gaussian random field metamodels, IEEE Trans. Evol. Comput., 10, 421, 10.1109/TEVC.2005.859463

Emmerich, 2011, Hypervolume-based expected improvement: monotonicity properties and exact computation, 2147

Hupkens, 2015, Faster exact algorithms for computing expected hypervolume improvement, 65

Emmerich, 2016, A multicriteria generalization of bayesian global optimization, 229

Yang, 2017, 685

Vazquez, 2010, Convergence properties of the expected improvement algorithm with fixed mean and covariance functions, J. Stat. Plann. Inference, 140, 3088, 10.1016/j.jspi.2010.04.018

Žilinskas, 1972, On one Bayesian method of search of the minimum, Avtomatica i Vychislitel'naya Teknika, 4, 42

Mockus, 2012, vol. 37

Torn, 1989

Li, 2008, Metamodel-assisted mixed integer evolution strategies and their application to intravascular ultrasound image analysis, 2764

Sacks, 1989, Design and analysis of computer experiments, Stat. Sci., 409, 10.1214/ss/1177012413

Chugh, 2017

Zitzler, 1998, Multiobjective optimization using evolutionary algorithms a comparative case study, 292

Emmerich, 2005, An EMO algorithm using the hypervolume measure as selection criterion, 62

Beume, 2007, SMS-EMOA: multiobjective selection based on dominated hypervolume, Eur. J. Oper. Res., 181, 1653, 10.1016/j.ejor.2006.08.008

Dennis, 1997, Managing approximation models in optimization, 330

Fleischer, 2003, The measure of Pareto optima applications to multi-objective metaheuristics, 519

Wagner, 2010, On expected-improvement criteria for model-based multi-objective optimization, 718

Kushner, 1964, A new method of locating the maximum point of an arbitrary multi-peak curve in the presence of noise, J. Basic Eng., 86, 97, 10.1115/1.3653121

Yang, 2016, Truncated expected hypervolume improvement: exact computation and application, 4350

Yang, 2016, Preference-based multiobjective optimization using truncated expected hypervolume improvement, 276

Zitzler, 1999, Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach, IEEE Trans. Evol. Comput., 3, 257, 10.1109/4235.797969

Beume, 2009, On the complexity of computing the hypervolume indicator, IEEE Trans. Evol. Comput., 13, 1075, 10.1109/TEVC.2009.2015575

Chan, 2013, Klee's measure problem made easy, 410

Emmerich, 2011, Computing hypervolume contributions in low dimensions: asymptotically optimal algorithm and complexity results, 121

H. B. Nielsen, S. N. Lophaven, J. Sřndergaard, DACE, a MATLAB Kriging Toolbox, Informatics and Mathematical Modelling. Lyngby–Denmark: Technical University of Denmark, DTU.

Wang, 2016, Balancing risk and expected gain in kriging-based global optimization, 719

Hansen, 2003, Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES), Evol. Comput., 11, 1, 10.1162/106365603321828970

Binh, 1996, An evolution strategy for the multiobjective optimization, 23

Shim, 2002, Pareto-based continuous evolutionary algorithms for multiobjective optimization, Eng. Comput., 19, 22, 10.1108/02644400210413649

Zitzler, 2000, Comparison of multiobjective evolutionary algorithms: empirical results, Evol. Comput., 8, 173, 10.1162/106365600568202

Emmerich, 2007, Test problems based on Lamé superspheres, 922

Chen, 1998, A structure-specified H∞ optimal control design for practical applications: a genetic approach, IEEE Trans. Contr. Syst. Technol., 6, 707, 10.1109/87.726532

Chiha, 2012, Tuning PID controller using multiobjective ant colony optimization, Appl. Comp. Intell. Soft Comput., 2012, 11

Saad, 2012, PID controller tuning using evolutionary algorithms, WSEAS Trans. Syst. Control, 7, 139

Zhao, 2011, Multi-objective robust PID controller tuning using two lbests multi-objective particle swarm optimization, Inf. Sci., 181, 3323, 10.1016/j.ins.2011.04.003

Ho, 2005, Designing structure-specified mixed H2∕H∞ optimal controllers using an intelligent genetic algorithm IGA, IEEE Trans. Contr. Syst. Technol., 13, 1119, 10.1109/TCST.2005.857403

Deb, 2000, A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, 849

Zhang, 2007, MOEA/D: a multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11, 712, 10.1109/TEVC.2007.892759

Lagarias, 1998, Convergence properties of the Nelder–Mead simplex method in low dimensions, SIAM J. Optim., 9, 112, 10.1137/S1052623496303470