Multi-Objective Bayesian Global Optimization using expected hypervolume improvement gradient
Tóm tắt
Từ khóa
Tài liệu tham khảo
Jin, 2011, Surrogate-assisted evolutionary computation: recent advances and future challenges, Swarm Evol. Comput., 1, 61, 10.1016/j.swevo.2011.05.001
Močkus, 1975, 400
Jones, 1998, Efficient global optimization of expensive black-box functions, J. Global Optim., 13, 455, 10.1023/A:1008306431147
Emmerich, 2005
Couckuyt, 2014, Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization, J. Global Optim., 60, 575, 10.1007/s10898-013-0118-2
Yang, 2015, Expected hypervolume improvement algorithm for PID controller tuning and the multiobjective dynamical control of a biogas plant, 1934
Luo, 2014, Kriging model based many-objective optimization with efficient calculation of expected hypervolume improvement, 1187
Shimoyama, 2013, Kriging-surrogate-based optimization considering expected hypervolume improvement in non-constrained many-objective test problems, 658
Emmerich, 2006, Single-and multiobjective evolutionary optimization assisted by Gaussian random field metamodels, IEEE Trans. Evol. Comput., 10, 421, 10.1109/TEVC.2005.859463
Emmerich, 2011, Hypervolume-based expected improvement: monotonicity properties and exact computation, 2147
Hupkens, 2015, Faster exact algorithms for computing expected hypervolume improvement, 65
Emmerich, 2016, A multicriteria generalization of bayesian global optimization, 229
Yang, 2017, 685
Vazquez, 2010, Convergence properties of the expected improvement algorithm with fixed mean and covariance functions, J. Stat. Plann. Inference, 140, 3088, 10.1016/j.jspi.2010.04.018
Žilinskas, 1972, On one Bayesian method of search of the minimum, Avtomatica i Vychislitel'naya Teknika, 4, 42
Mockus, 2012, vol. 37
Torn, 1989
Li, 2008, Metamodel-assisted mixed integer evolution strategies and their application to intravascular ultrasound image analysis, 2764
Chugh, 2017
Zitzler, 1998, Multiobjective optimization using evolutionary algorithms a comparative case study, 292
Emmerich, 2005, An EMO algorithm using the hypervolume measure as selection criterion, 62
Beume, 2007, SMS-EMOA: multiobjective selection based on dominated hypervolume, Eur. J. Oper. Res., 181, 1653, 10.1016/j.ejor.2006.08.008
Dennis, 1997, Managing approximation models in optimization, 330
Fleischer, 2003, The measure of Pareto optima applications to multi-objective metaheuristics, 519
Wagner, 2010, On expected-improvement criteria for model-based multi-objective optimization, 718
Kushner, 1964, A new method of locating the maximum point of an arbitrary multi-peak curve in the presence of noise, J. Basic Eng., 86, 97, 10.1115/1.3653121
Yang, 2016, Truncated expected hypervolume improvement: exact computation and application, 4350
Yang, 2016, Preference-based multiobjective optimization using truncated expected hypervolume improvement, 276
Zitzler, 1999, Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach, IEEE Trans. Evol. Comput., 3, 257, 10.1109/4235.797969
Beume, 2009, On the complexity of computing the hypervolume indicator, IEEE Trans. Evol. Comput., 13, 1075, 10.1109/TEVC.2009.2015575
Chan, 2013, Klee's measure problem made easy, 410
Emmerich, 2011, Computing hypervolume contributions in low dimensions: asymptotically optimal algorithm and complexity results, 121
H. B. Nielsen, S. N. Lophaven, J. Sřndergaard, DACE, a MATLAB Kriging Toolbox, Informatics and Mathematical Modelling. Lyngby–Denmark: Technical University of Denmark, DTU.
Wang, 2016, Balancing risk and expected gain in kriging-based global optimization, 719
Hansen, 2003, Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES), Evol. Comput., 11, 1, 10.1162/106365603321828970
Binh, 1996, An evolution strategy for the multiobjective optimization, 23
Shim, 2002, Pareto-based continuous evolutionary algorithms for multiobjective optimization, Eng. Comput., 19, 22, 10.1108/02644400210413649
Zitzler, 2000, Comparison of multiobjective evolutionary algorithms: empirical results, Evol. Comput., 8, 173, 10.1162/106365600568202
Emmerich, 2007, Test problems based on Lamé superspheres, 922
Chen, 1998, A structure-specified H∞ optimal control design for practical applications: a genetic approach, IEEE Trans. Contr. Syst. Technol., 6, 707, 10.1109/87.726532
Chiha, 2012, Tuning PID controller using multiobjective ant colony optimization, Appl. Comp. Intell. Soft Comput., 2012, 11
Saad, 2012, PID controller tuning using evolutionary algorithms, WSEAS Trans. Syst. Control, 7, 139
Zhao, 2011, Multi-objective robust PID controller tuning using two lbests multi-objective particle swarm optimization, Inf. Sci., 181, 3323, 10.1016/j.ins.2011.04.003
Ho, 2005, Designing structure-specified mixed H2∕H∞ optimal controllers using an intelligent genetic algorithm IGA, IEEE Trans. Contr. Syst. Technol., 13, 1119, 10.1109/TCST.2005.857403
Deb, 2000, A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, 849
Zhang, 2007, MOEA/D: a multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11, 712, 10.1109/TEVC.2007.892759