Multi-Modal Co-Attention Capsule Network for Fake News Detection

Chunyan Yin, Yongheng Chen

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ma, J., Gao, W., Wei, Z.Y., Lu, Y.M., and Wong, K.F., Detect rumors using time series of social context information on microblogging websites, in Proceedings of ACM on CIKM, 2015, pp. 1751–1754.

Liu, X.M., Armineh, N., Li, Q.Z., Rui, F., and Sameena, S., Real-time rumor debunking on twitter, in Proceedings of ACM on CIKM, 2015, pp. 867–1870.

Ma, J., Gao, W., and Wong, K.F., Detect rumors in microblog posts using propagation structure via kernel learning, in Proceeding of the ACL, 2017.

Liu, Y. and Wu, Y.F., Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks, in AAAI on Artificial Intelligence, 2018, pp. 254–261.

Yin, C.Y., Chen, Y.H., and Zuo, W.L., Multi-task deep neural networks for joint sarcasm detection and sentiment analysis, Pattern Recognit. Image Anal., 2021, no. 31, pp. 103–108.

Chen, Y.H., Yin, C.Y., and Zuo, W.L., Multi-task learning for stance and early rumor detection, Opt. Mem. Neural Networks, 2021, no. 30, pp. 131–139.

Bian, T., Xiao, X., and Xu, T., Rumor detection on social media with bi-directional graph convolutional networks, AAAI Artif. Intell., 2020, no. 34, pp. 549–556.

Tu, K.F., Chen, C., Hou, C.Y., Yuan, J., Li, J.D., and Yuan, X.J., Rumor2vec: A rumor detection framework with joint text and propagation structure representation learning, Inf. Sci., 2021, no. 560, pp. 137–151.

Xu, S.Z., Liu, X.D., Ma, K., Dong, F.M., Xiang, S.Z., and Bing, C.H., Rumor detection on microblogs using dual-grained feature via graph neural networks, AAAI Artif. Intell., 2021, pp. 205–216.

Bi, B., Wang, Y., Zhang, H., et al., Microblog-HAN: A micro-blog rumor detection model based on heterogeneous graph attention network, PLoS One, 2022, vol. 17, no. 4, pp. 1–18.

Yang, P., Leng, J.C., Zhao, G.Z., and Li, W.J., Rumor detection driven by graph attention capsule network on dynamic propagation structures, J. Supercomput., 2022, pp. 1–22.

Cao, J., Peng, Q., Qiang, S., Yang, T.Y., Guo, J., and Li, J.T., Exploring the role of visual content in fake news detection, Disinformation, Misinformation, and Fake News in Social Media, 2020, pp. 141–161.

Singhal, S., Kabra, A., Sharma, M., Shah, R.R., Chakraborty, T., and Kumaraguru, P., Spotfake+: A multimodal framework for fake news detection via transfer learning, AAAI Artif. Intell., 2020, vol. 34, no. 10, pp. 3915–13916.

Wang, Y., Qian, S., Hu, J., Fang, Q., and Xu, C., Fake news detection via knowledge-driven multimodal graph convolutional networks, in Proceedings of ICMR, 2020, pp. 540–547.

Sheng, Q.S., Hu, J., and Fang, Q., Knowledge-aware multi-modal adaptive graph convolutional networks for fake news detection, ACM Trans. Multimedia Comput., Commun., Appl., 2021, vol. 17, no. 3, pp. 1–23.

Zhou, H., Ma, T., Rong, H., et al., MDMN: Multi-task and domain adaptation based multi-modal network for early rumor detection, Expert Syst. Appl., 2022, no. 195, pp. 1–11.

Shu, K., Zhou, X.Y., Wang, S.H., Reza, Z., and Liu, H., The role of user profiles for fake news detection, in Proceedings of IEEE ACM Conference on ASONAM, 2019, pp. 436–439.

Shu, K., Sliva, A., Wang, S., Tang, J., and Liu, H., Fake news detection on social media: A data mining perspective, ACM SIGKDD Explor. Newsl., 2017, vol. 19, no. 1, pp. 22–36.

Liu, Y.H., Jin, X.L., Shen, H., Peng, B., and Cheng, X., A survey on rumor identification over social media, Chin. J. Comput., 2018, vol. 41, no. 7, pp. 1536–1558.

Hamilton, W.L., Ying, R., and Leskovec, J., Inductive representation learning on large graphs, in Proceedings of Conference on NIPS, 2017, pp. 1025–1035.

Devlin, J., Chang, M.W., Lee, K., and Toutanova, K., BERT: Pre-training of deep bidirectional transformers for language understandingm in Proceedings of Conference of the Association for Computational Linguistics on Human Language Technologies, 2019, pp. 4171–4186.

Cho, K., Merrienboer, B., Gulcehre, C., Bougares, F., et al., Learning phrase tepresentations using RNN encoder-decoder for statistical machine translation, in Proceedings of Conference on EMNLP, 2014, pp. 1724–1734.

Vaswani, A., Shazeer, N., Parmar, N., et al., Attention is all you need, in Proceedings of Conference on NIPS, 2017, pp. 5998–6008.

Yang, M., Zhao, W., Ye, J., Lei, Z.Y., Zhao, Z., and Zhang, S., Investigating capsule networks with dynamic routing for text classification, in Proceedings of Conference on EMNLP, 2018, pp. 3110–3119.

Sabour, S., Frosst, N., and Hinton, G.E., Dynamic routing between capsules, in Proceedings of Conference on NIPS, 2017, pp. 3856–3866.

Jin, Z.W., Cao, J., Guo, H., Zhang, Y.D., and Luo, J., Multimodal fusion with recurrent neural networks for rumor detection on microblogs, in Proceedings of ACM on Multimedia, 2017, pp. 795–816.

Zubiaga, A., Liakata, M., and Procter, R., Exploiting context for rumour detection in social media, in Conference on Social Informatics, 2017, pp. 109–123.

Khattar, D., Goud, J.S., Gupta, M., and Varma, V., MVAE: Multimodal variational autoencoder for fake news detection, in WWW Conference, 2019, pp. 2915–2921.

Yu, F., Liu, Q., Wu, S., Wang, L., and Tan, T., A Convolutional approach for misinformation identification, in Proceedings of IJCAI, 2017, pp. 3901–3907.

Yao, L., Mao, C.S., and Luo, Y., Graph convolutional networks for text classification, in AAAI on Artificial Intelligence, 2019, pp. 7370–7377.

Wang, Y., Ma, F., Jin, Z., Yuan, Y., Xun, G., Jha, K., et al., Eann: Event adversarial neural networks for multi-modal fake news detection, in Proceedings of ACM SIGKDD on KDD, 2018, pp. 49–857

Zhou, X., Wu, J., and Zafarani, R., SAFE: Similarity-aware multi-modal fake news detection, in Proceedings of ACM SIGKDD on KDD, 2020, pp. 354–367.

Saracco, F., Clemente, D.R., Gabrielli, A., and Squartini, T., Randomizing bipartite networks: The case of the World Trade Web, Sci. Rep., 2016, vol. 5, no. 10595, pp. 1–18.