Multi‐Material 3D and 4D Printing: A Survey

Advanced Science - Tập 7 Số 12 - 2020
Mohammad Rafiee1, Rouhollah D. Farahani1, Daniel Therriault1
1Laboratory for Multiscale Mechanics, Department of Mechanical Engineering, Polytechnique Montreal, Montreal, Quebec, H3T 1J4 Canada

Tóm tắt

AbstractRecent advances in multi‐material 3D and 4D printing (time as the fourth dimension) show that the technology has the potential to extend the design space beyond complex geometries. The potential of these additive manufacturing (AM) technologies allows for functional inclusion in a low‐cost single‐step manufacturing process. Different composite materials and various AM technologies can be used and combined to create customized multi‐functional objects to suit many needs. In this work, several types of 3D and 4D printing technologies are compared and the advantages and disadvantages of each technology are discussed. The various features and applications of 3D and 4D printing technologies used in the fabrication of multi‐material objects are reviewed. Finally, new avenues for the development of multi‐material 3D and 4D printed objects are proposed, which reflect the current deficiencies and future opportunities for inclusion by AM.

Từ khóa


Tài liệu tham khảo

10.1002/adma.201506215

Tibbits S., 2014, Archit. Des., 84, 116

10.1080/17452759.2013.778175

10.1007/s40684-017-0035-9

10.1016/j.mser.2018.04.001

Maruo S., 2001, 14th IEEE Int. Conf. on Micro Electro Mechanical Systems, 151

Inamdar A., 2006, Proc. of 17th Annual Solid Freeform Fabrication. Symp.

10.1016/S0261-3069(03)00153-5

10.1007/s00170-009-2434-8

10.1016/j.jmatprotec.2010.10.003

10.1080/17452759.2012.721119

10.1108/13552541311312148

Bahr R., 2018, IEEE MTT‐S Int. Microwave Workshop Series on Advanced Materials and Processes

10.1016/j.addma.2018.10.033

10.1038/s41467-018-05234-0

10.1038/s41598-018-26980-7

Sitthi‐Amorn P., 2015, ACM Trans. Graph., 11, 317

10.1016/j.jmatprotec.2016.07.025

10.1038/srep23058

10.1016/j.compositesa.2016.05.032

10.1007/s10853-017-1624-2

10.1016/j.proeng.2014.10.196

10.1108/RPJ-08-2015-0098

10.4236/ojcm.2016.61003

10.1016/j.compstruct.2016.07.018

10.1016/j.addma.2018.04.039

10.1002/adem.201800691

10.1177/0095244318817867

10.1016/j.compstruct.2018.08.091

10.1016/j.compstruct.2018.09.014

10.1016/j.polymertesting.2017.11.004

10.1007/s00170-016-9891-7

10.1081/AMP-100103694

10.1063/1.4963614

10.1108/RPJ-03-2017-0046

10.1049/el.2015.2186

Hawatmeh D., 2016, A Multi‐Material 3D Printing Approach for Conformal Microwave Antennas, 7

Mirotznik M. S., 2016, 2016 Int. Workshop on Antenna Technology (iWAT), 123, 10.1109/IWAT.2016.7434820

10.1080/17452759.2012.731369

10.1021/acsami.7b10285

10.1038/ncomms9643

10.1016/j.matdes.2016.11.006

10.1016/j.polymer.2018.06.076

10.1002/advs.201800730

Nassar H., 2018, IEEE Sensors

10.1021/acsaelm.9b00564

10.1002/adem.201800206

10.1007/s00707-011-0491-1

10.1016/j.camwa.2013.04.031

10.1016/j.ijnonlinmec.2013.10.011

10.1016/S1526-6125(02)70139-4

10.1016/j.matdes.2018.07.012

10.1016/j.cirp.2012.03.050

10.2351/1.4906303

10.1016/j.procir.2018.08.104

10.1371/journal.pone.0160624

10.1109/JMEMS.2017.2743020

10.1038/srep45671

Jiang X., 2017, 2017 IEEE 12th Int. Conf. Nano/Micro Engineered Molecular Systems(NEMS 2017), 38

Cazón‐Martín A., 2019, Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol., 233, 160

10.1038/s41598-018-31819-2

10.1016/j.matdes.2018.11.024

10.1080/17452759.2016.1242915

10.1063/1.4917300

10.1145/2766962

10.1007/s00170-017-0972-z

10.1088/1361-6439/aaf25a

10.1109/JMEMS.2005.859087

Multi‐Material Recoater https://aerosint.com/home/ (accessed: April 2020).

10.1007/s10853-007-1661-3

10.1016/j.matlet.2019.05.108

10.1016/j.surfcoat.2004.07.070

10.1016/j.jmatprotec.2012.11.020

10.1016/j.addma.2018.02.007

10.2351/1.5040639

10.1016/j.matlet.2018.10.084

10.1016/j.matlet.2017.03.181

10.1002/adem.200300567

10.1016/j.msea.2016.01.019

10.1016/j.jallcom.2019.01.213

10.1016/j.msea.2018.11.118

10.2351/1.2164485

10.1016/j.actamat.2016.02.019

10.1016/j.cirpj.2010.07.006

10.1007/s00170-013-5266-5

10.1007/s11665-018-3614-1

10.1016/j.matdes.2012.06.029

10.1088/0960-1317/22/8/085014

10.1002/adma.201305506

10.1088/1758-5090/8/1/015002

10.1039/C6LC00292G

10.1016/j.addma.2016.12.003

10.1007/s12541-017-0072-x

10.1016/j.procir.2017.04.022

10.1088/1758-5090/aa7077

M.Toursangsaraki 2018 A review of multi‐material and composite parts production by modified additive manufacturing methods arXiv preprintarXiv:1808.01861.

10.1088/1748-6041/11/1/014102

10.1088/1758-5082/6/3/035018

10.1007/s40684-017-0040-z

10.1039/C5MH00212E

10.1038/srep24224

10.1038/srep13616

10.1088/0964-1726/25/10/105034

10.1088/1361-665X/aabc2a

10.1038/srep31110

10.1088/1361-665X/aabe63

10.1016/j.sna.2019.03.015

10.1016/j.matdes.2018.06.027

Deng D., 2016, Int. Symp. Flexible Automation (ISFA), 286, 10.1109/ISFA.2016.7790176

10.1016/j.matdes.2019.107798

10.1016/j.matdes.2017.08.069

10.1016/j.addma.2019.05.031

10.1038/lsa.2012.6

10.1007/978-981-10-4759-6

10.1002/adma.201302042

10.1016/j.addma.2018.06.023

Groth C., 2014, J. Clin. Orthod., 48, 475

10.1093/ejcts/ezu148

Polyjet products www.stratasys.com/(accessed: April 2020).