Mullite for Structural, Electronic, and Optical Applications

Journal of the American Ceramic Society - Tập 74 Số 10 - Trang 2343-2358 - 1991
İlhan A. Aksay1,2, Daniel M. Dabbs1,2, Mehmet Sarıkaya1,2
1Department of Materials Science and Engineering and Advanced Materials Technology Center, Washington Technology Center, University of Washington, Seattle, Washington 98195
2*Member, American Ceramic Society.

Tóm tắt

Mullite (3Al2O3·2SiO2) is becoming increasingly important in electronic, optical, and high‐temperature structural applications. This paper reviews the current state of mullite‐related research at a fundamental level, within the framework of phase equilibria, crystal structure, synthesis, processing, and properties. Phase equilibria are discussed in terms of the problems associated with the nucleation kinetics of mullite and the large variations observed in the solid‐solution range. The incongruent melting behavior of mullite is now widely accepted. Large variations in the solid solubility from 58 to 76 mol% alumina are related to the ordering/disordering of oxygen vacancies and are strongly coupled with the method of synthesis used to form mullite. Similarly, reaction sequences which lead to the formation of mullite upon heating depend on the spatial scale at which the components are mixed. Mixing at the atomic level is useful for low‐temperature (<1000°C) synthesis of mullite but not for low‐temperature sintering. In contrast, precursors that are segregated are better suited for low‐temperature (1250° to 1500°C) densification through viscous deformation. Flexural strength and creep resistance at elevated temperatures are significantly affected by the presence of glassy boundary inclusions; in the absence of glassy inclusions, polycrystalline mullite retains >90% of its room‐temperature strength to 1500°C and displays very high creep resistance. Because of its low dielectric constant, mullite has now emerged as a substrate material in high‐performance packaging applications. Interest in optical applications mainly centers on its applicability as a window material within the mid‐infrared range.

Từ khóa


Tài liệu tham khảo

Norton F. H., 1970, Fine Ceramics, Technology, and Applications, 1

10.1111/j.1151-2916.1991.tb06872.x

Sömiya S., 1991, Mullite Powder Technology and Applications in Japan, Am. Ceram. Soc. Bull., 70, 1624

Nixon R. D., 1990, Mullite and Mullite Matrix Composites, 579

Tummala R. R., Ceramic and Glass‐Ceramic Packaging in the 1990s, J. Am. Ceram. Soc., 74, 895, 10.1111/j.1151-2916.1991.tb04320.x

10.1111/j.1151-2916.1983.tb11004.x

10.1111/j.1151-2916.1924.tb18190.x

10.2475/ajs.s4-28.166.293

Holm J. L., 1966, The Thermodynamic Properties of the Aluminum Silicates, Am. Mineral., 51, 1608

Johnstone G. S., 1989, The Northern Highlands of Scotland, 138

Bowen N. L., 1924, Mullite, a Silicate of Alumina, J. Wash. Acad. Sci., 14, 183

Grofcsik J., 1961, Mullite, Its Structure, Formation, and Significance

10.1111/j.1151-2916.1950.tb12776.x

10.1111/j.1151-2916.1951.tb11650.x

Davis R. F., 1971, High‐Temperature Oxides, 37

10.1111/j.1151-2916.1977.tb15492.x

Ceramic Transactions, 1990, Mullite and Mullite Matrix Composites

Symposium F: Mullite Processing, Structrue, and Properties” (American Ceramic Society Pacific Coast Regional Meeting, 1990, Am. Ceram. Soc. Bull., 69, 1526

10.1111/j.1151-2916.1962.tb11133.x

10.1126/science.183.4120.69

10.1111/j.1151-2916.1975.tb18770.x

10.1111/j.1151-2916.1987.tb04875.x

Klug F. J., 1990, Mullite and Mullite Matrix Composites, 15

Pask J. A., 1990, Mullite and Mullite Matrix Composites, 1

Roy R., 1990, Mullite and Mullite Matrix Composites, 45

Risbud S. H., 1990, Ceramic Transactions, Vol. 6, Mullite and Mullite Matrix Composites, 61

10.1007/978-1-4684-3150-6_29

10.1180/minmag.1966.035.274.02

10.2475/ajs.s5-11.66.459

10.1111/j.1151-2916.1960.tb13643.x

10.1107/S0365110X62000134

Cameron W. E., 1977, Compositions and Cell Dimensions in Mullite, Am. Ceram. Soc. Bull., 56, 1003

Cameron W. E., 1977, Mullite: A Substituted Alumina, Am. Mineral., 62, 747

Saalfeld H., 1979, The Domain Structure of 2:1 Mullite (2Al2O3·SiO2), Mineral. Abh., 134, 305

Burnham C. W., 1964, Compositional Limits of Mullite and the Sillimanite—Mullite Solid Solution Problem, Crnegie Inst. Washington, Year Book, 63, 227

10.2183/pjab1945.51.173

Angel R. J., 1986, Crystal Structure of Mullite: A Reexamination of the Average Structure, Am. Mineral., 71, 1476

Durovic S., 1969, Refinement of the Crystal Structure of Mullite, Slovak. Acad. Sci., Cheicke Zvesti, 23, 113

10.1107/S0567739480000538

10.1103/PhysRevB.31.6140

10.1111/j.1151-2916.1983.tb10615.x

Nakajima Y., 1981, Twinning and Superstructure of Al‐Rich Mullite, Am. Mineral., 66, 142

10.1107/S0108767390001118

10.1111/j.1151-2916.1972.tb13434.x

Yoldas B. E., 1980, Microstructure of Monolithic Materials Formed by Heat Treatment of Chemically Polymerized Precursors in the SiO2—Al2O3 Binary, Am. Ceram. Soc. Bull., 59, 479

10.1111/j.1151-2916.1984.tb19636.x

10.1016/0267-3762(85)90022-0

10.1117/12.936411

10.2109/jcersj1950.94.1089_485

10.1111/j.1151-2916.1986.tb04808.x

10.2109/jcersj1950.95.1103_697

10.1111/j.1151-2916.1987.tb04867.x

10.1007/978-1-4613-1933-7_62

10.1111/j.1551-2916.1988.tb00214.x

10.1111/j.1151-2916.1988.tb05923.x

10.1111/j.1151-2916.1988.tb05923.x

10.1111/j.1151-2916.1989.tb06312.x

Hirata Y., 1990, Ceramic Transactions, Vol. 6, Mullite and Mullite Matrix Composites, 323

10.1111/j.1151-2916.1991.tb06780.x

10.1111/j.1151-2916.1991.tb06771.x

10.1111/j.1151-2916.1991.tb06785.x

J. E.Webb “Processing of Mullite for Use as a Ceramic‐Ceramic Composite Matrix Material”;M. S. Thesis. University of Washington Seattle WA Aug. 1991.

10.1111/j.1151-2916.1991.tb06776.x

Sacks M. D., 1990, Ceramic Transactions, Vol. 6, Mullite and Mullite Matrix Composites, 167

10.1111/j.1151-2916.1959.tb14314.x

Okada K., 1990, Ceramic Transactions, Vol. 6, Mullite and Mullite Matrix Composites, 375

10.1111/j.1151-2916.1986.tb07466.x

10.1111/j.1151-2916.1987.tb05637.x

10.1111/j.1151-2916.1991.tb06770.x

Hori S., 1990, Ceramic Transactions, Vol. 6, Mullite and Mullite Matrix Composites, 311

Kumazawa T., 1990, Ceramic Transactions, Vol. 6, Mullite and Mullite Matrix Composites, 401

10.2109/jcersj1950.93.46

10.1111/j.1151-2916.1987.tb04888.x

10.1111/j.1151-2916.1991.tb06773.x

10.1007/978-1-4615-9439-0_13

10.1038/1911000a0

I. A.Aksay “Diffusion and Phase Relationship Studies in the Alumina—Silica System”;Ph.D. Thesis. University of California Berkeley CA April 1973; Rept. No. UCLBL‐1403.

10.1111/j.1151-2916.1983.tb10532.x

10.1111/j.1151-2916.1985.tb15252.x

10.1016/0267-3762(86)90014-7

10.1111/j.1151-2916.1987.tb04857.x

Kumazawa T., 1988, Influence of Chemical Composition on the Mechanical Properties of SiO2—Al2O3 Ceramics, Yogyo-Kyokaishi, 96, 85

Kumazawa T., 1990, (1B15) in Extended Abstracts of the Annual Meeting, 34

Ohnishi H., 1990, Microstructure and Mechanical Properties of Mullite Ceramics, Yogyo Kyokaishi, 98, 541

10.1111/j.1151-2916.1966.tb13271.x

10.1111/j.1151-2916.1975.tb19585.x

10.1111/j.1151-2916.1991.tb06787.x

10.1111/j.1151-2916.1980.tb10700.x

10.1007/BF01026966

10.1111/j.1151-2916.1987.tb05734.x

10.1111/j.1151-2916.1991.tb06781.x

Peretz I., 1990, Ceramic Transactions, Vol. 6, Mullite and Mullite Matrix Composites, 613

Giess E. A., 1990, Ceramic Transactions, Vol. 15, Microelectronic Systems, 167

Kanzaki S., 1990, Ceramic Transactions, Vol. 6, Mullite and Mullite Matrix Composites, 389

10.1117/12.932477

10.1117/12.936409

Yoldas B. E., 1975, A Transparent Porous Alumina, Am. Ceram. Soc. Bull., 54, 286

Roy R., 1953, Distinction of Sillimanite from Mullite by Infra‐Red Techniques, Am. Mineral., 7, 725

10.1111/j.1151-2916.1957.tb12588.x

Metcalfe B. L., 1975, The Synthesis, Microstructure, and Physical Properties of High‐Purity Mullite, Trans. Br. Ceram. Soc., 74, 193

10.1002/jctb.5010190301

J. J.Lannutti D. R.Treadwell D. M.Dabbs andI. A.Aksay “Evolution of Mullite from Inorganic Polymers”; unpublished work.

10.1117/12.932488

Prochazka S., 1984, Better Ceramics Through Chemistry, 245

10.1016/0022-2313(86)90054-2

10.1109/3.233