Mukolipidosen

Springer Science and Business Media LLC - Tập 154 - Trang 955-961 - 2006
S. Tiede1, S. Storch1, T. Braulke1
1Biochemie, Klinik und Poliklinik für Kinder- und Jugendmedizin, Gebäude W23, Universitätsklinikum Hamburg Eppendorf, Hamburg, Deutschland

Tóm tắt

Die Gruppe der Mukolipidosen umfasst 4 seltene lysosomale Speichererkrankungen, die klinisch den Mukopolysaccharidosen ähneln, aber ihre Ursache in mutanten Membranproteinen oder Komponenten von Enzymkomplexen haben, die größtenteils nicht im Lysosom lokalisiert sind. Mit Ausnahme der Mukolipidose III sind alle Formen durch schwere psychomotorische Retardierung gekennzeichnet, während skelettale Dysmorphien und Retinopathien krankheitsabhängig unterschiedlich stark ausgeprägt sind. Für alle Mukolipidosen stehen enzymatische und molekulargenetische Verfahren zur prä- und postnatalen Diagnostik zur Verfügung. Die Identifizierung der krankheitsrelevanten Gene wird das Verständnis pathogener Mechanismen und der Variabilität im klinischen Phänotyp dieser Krankheiten verbessern und möglicherweise zur Entwicklung neuer Therapien beitragen.

Tài liệu tham khảo

Altarescu G, Sun M, Moore DF et al. (2002) The neurogenetics of mucolipidosis type IV. Neurology 59: 306–313 Bach G (2001) Mucolipidosis type IV. A review. Mol Genet Metab 73: 197–203 Bach G, Webb MB, Bargal R et al. (2005) The frequency of mucolipidosis type IV in the Ashkenazi Jewish population and the identification of 3 novel MCOLN1 mutations. Hum Mutat 26: 591 Bargal R, Avidan N, Ben-Asher E et al. (2000) Identification of the gene causing mucolipidosis type IV. Nat Genet 26: 118–121 Bargal R, Zeigler M, Abu-Libdeh B et al. (2006) When mucolipidosis III meets mucolipidosis II: GNPTA gene mutations in 24 patients. Mol Genet Metab 88: 359–363 Chitayat D, Meunier CM, Hodgkinson KA et al. (1991) Mucolipidosis type IV: clinical manifestations and natural history. Am J Med Genet 41: 313–318 Grewal S, Shapiro E, Braunlin E et al. (2003) Continued neurocognitive development and prevention of cardiopulmonary complications after successful BMT for I-cell disease: a long-term follow-up report. Bone Marrow Transplant 32: 957–960 Kornfeld S, Sly WS (2001) I-cell disease and pseudo-Hurler polydystrophy: disorders of lysosomal enzyme phosphorylation and localization. In: Sciver CR, Beaudet AL, Sly WS et al. (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 3469–3482 Kudo M, Brem MS, Canfield WM (2006) Mucolipidosis II (I-cell disease) and mucolipidosis IIIA (classical pseudo-Hurler polydystrophy) are caused by mutations in the GlcNAc-phosphotransferase alpha/beta-subunits precursor gene. Am J Hum Genet 78: 451–463 Poorthuis BJ, Wevers RA, Kleijer WJ et al. (1999) The frequency of lysosomal storage diseases in The Netherlands. Hum Genet 105: 151–156 Raas-Rothschild A, Cormier-Daire V, Bao M et al. (2000) Molecular basis of variant pseudo-Hurler polydystrophy (mucolipidosis IIIC). J Clin Invest 105: 673–681 Raas-Rothschild A, Bargal R, Goldman O et al. (2004) Genomic organisation of the UDP-N-acetylglucosamine-1-phosphotransferase gamma subunit (GNPTAG) and its mutations in mucolipidosis III. J Med Genet 41: e52 Robinson C, Baker N, Noble J et al. (2002) The osteodystrophy of mucolipidosis type III and the effects of intravenous pamidronate treatment. J Inherit Metab Dis 25: 681–693 Saul RA, Proud V, Taylor HA et al. (2005) Prenatal mucolipidosis type II (I-cell disease) can present as Pacman dysplasia. Am J Med Genet A 135: 328–332 Schiff M, MaireI, Bertrand Y et al. (2005) Long-term follow-up of metachronous marrow-kidney transplantation in severe type II sialidosis: what does success mean? Nephrol Dial Transplant 20: 2563–2565 Seyrantepe V, Poupetova H, Froissart R et al. (2003) Molecular pathology of NEU1 gene in sialidosis. Hum Mutat 22: 343–352 Soyombo AA, Tjon-Kon-Sang S, Rbaibi Y et al. (2006) TRP-ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity. J Biol Chem 281: 7294–7301 Steet RA, Hullin R, Kudo M et al. (2005) A splicing mutation in the alpha/beta GlcNAc-1-phosphotransferase gene results in an adult onset form of mucolipidosis III associated with sensory neuropathy and cardiomyopathy. Am J Med Genet A 132: 369–375 Storch S, Braulke T (2005) Transport of lysosomal enzymes. In: Saftig P (ed) Lysosomes. Springer, Berlin Heidelberg New York, pp 17–26 Thomas GH (2001) Disorders of glycoprotein degradation. In: Sciver CR, Beaudet AL, Sly WS et al. (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 3507–3533 Tiede S, Cantz M, Raas-Rothschild A et al. (2004) A novel mutation in UDP-N-acetylglucosamine-1-phosphotransferase gamma subunit (GNPTAG) in two siblings with mucolipidosis type III alters a used glycosylation site. Hum Mutat 24: 535 Tiede S, Muschol N, Reutter G et al. (2005) Missense mutations in N-acetylglucosamine-1-phosphotransferase alpha/beta subunit gene in a patient with mucolipidosis III and a mild clinical phenotype. Am J Med Genet 137A: 235–240 Tiede S, Storch S, Lübke T et al. (2005) Mucolipidosis II is caused by mutations in GNPTA encoding the α/β GlcNAc-1-phosphotransferase. Nat Med 11: 1109–1112 Tiede S, Cantz M, Spranger J et al. (2006) Missense mutation in the N-acetylglucosamine-1-phosphotransferase gene (GNPTA) in a patient with mucolipidosis II induces changes in the size and cellular distribution of GNPTG. Hum Mutat 27: 830–831 Song J, Lee DS, Cho HI et al. (2003) Biochemical characteristics of a Korean patient with mucolipidosis III (pseudo-Hurler polydystrophy). J Korean Med Sci 18: 722–726