Mucosal immunology of the ocular surface

Mucosal Immunology - Tập 15 - Trang 1143-1157 - 2022
Cintia S. de Paiva1, Anthony J. St. Leger2,3, Rachel R. Caspi4
1Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
2Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
3Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
4Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA

Tài liệu tham khảo

Sridhar, 2018, Anatomy of cornea and ocular surface, Indian J. Ophthalmol., 66, 190, 10.4103/ijo.IJO_646_17 Xiao, 2018, Goblet cell-produced retinoic acid suppresses CD86 expression and IL-12 production in bone marrow-derived cells, Int. Immunol., 30, 457, 10.1093/intimm/dxy045 Contreras-Ruiz, 2013, Modulation of conjunctival goblet cell function by inflammatory cytokines, Mediators Inflamm., 2013, 636812, 10.1155/2013/636812 Payne, 1994, The harderian gland: a tercentennial review, J. Anat., 185, 1 Knop, 2001, Lacrimal drainage-associated lymphoid tissue (LDALT): a part of the human mucosal immune system, Invest Ophthalmol. Vis. Sci., 42, 566 Knop, 2000, Conjunctiva-associated lymphoid tissue in the human eye, Investig. Ophthalmol. Vis. Sci., 41, 1270 Chodosh, 1998, Comparative anatomy of mammalian conjunctival lymphoid tissue: a putative mucosal immune site, Dev. Comp. Immunol., 22, 621, 10.1016/S0145-305X(98)00022-6 Knop, 2005, The role of eye-associated lymphoid tissue in corneal immune protection, J. Anat., 206, 271, 10.1111/j.1469-7580.2005.00394.x Knop, 2008, Local production of secretory IgA in the eye-associated lymphoid tissue (EALT) of the normal human ocular surface, Investig. Ophthalmol. Vis. Sci., 49, 2322, 10.1167/iovs.07-0691 Schuh, 2021, Mucosa-Associated Lymphoid Tissue and Tertiary Lymphoid Structures of the Eye and Ear in Laboratory Animals, Toxicol. Pathol., 49, 472, 10.1177/0192623320970448 Allansmith, 1987, The immune response of the lacrimal gland to antigenic exposure, Curr. Eye Res., 6, 921, 10.3109/02713688709034860 Gudmundsson, 1988, T-lymphocyte subsets in the human lacrimal gland, Acta Ophthalmologica, 66, 19, 10.1111/j.1755-3768.1988.tb08528.x Gudmundsson, 1988, T cell populations in the lacrimal gland during aging, Acta Ophthalmologica, 66, 490, 10.1111/j.1755-3768.1988.tb04369.x Nasu, 1984, Post-mortem prevalence of lymphocytic infiltration of the lacrymal gland: a comparative study in autoimmune and non-autoimmune diseases, J. Pathol., 143, 11, 10.1002/path.1711430104 Damato, 1984, Senile atrophy of the human lacrimal gland: the contribution of chronic inflammatory disease, Br. J. Ophthalmol., 68, 674, 10.1136/bjo.68.9.674 Obata, 2006, Anatomy and histopathology of the human lacrimal gland, Cornea, 25, S82, 10.1097/01.ico.0000247220.18295.d3 Obata, 1995, Histopathologic study of human lacrimal gland, Stat. Anal. Spec. Ref. aging Ophthalmol., 102, 678 Trujillo-Vargas, C. M. et al. Immune phenotype of the CD4 + T cells in the aged lymphoid organs and lacrimal glands. GeroSciencehttps://doi.org/10.1007/s11357-022-00529-z (2022). Steven, 2008, Experimental induction and three-dimensional two-photon imaging of conjunctiva-associated lymphoid tissue, Investig. Ophthalmol. Vis. Sci., 49, 1512, 10.1167/iovs.07-0809 Siebelmann, 2013, Development, alteration and real time dynamics of conjunctiva-associated lymphoid tissue, PloS One, 8, e82355, 10.1371/journal.pone.0082355 Steven, 2009, Conjunctiva-associated lymphoid tissue - current knowledge, animal models and experimental prospects, Ophthalmic Res., 42, 2, 10.1159/000219678 Steven, P. et al. Disease-Specific Expression of Conjunctiva Associated Lymphoid Tissue (CALT) in Mouse Models of Dry Eye Disease and Ocular Allergy. Int. J. Mol. Sci.21https://doi.org/10.3390/ijms21207514 (2020). Hingorani, 1997, Characterisation of the normal conjunctival leukocyte population, Exp. Eye Res., 64, 905, 10.1006/exer.1996.0280 Hingorani, 1998, The role of conjunctival epithelial cells in chronic ocular allergic disease, Exp. Eye Res., 67, 491, 10.1006/exer.1998.0528 Dua, 1995, The ocular surface as part of the mucosal immune system: conjunctival mucosa-specific lymphocytes in ocular surface pathology, Eye, 9, 261, 10.1038/eye.1995.51 Coursey, 2017, Age-related spontaneous lacrimal keratoconjunctivitis is accompanied by dysfunctional T regulatory cells, Mucosal Immunol., 10, 743, 10.1038/mi.2016.83 O'Brien, 2012, αβ TCR+ T cells, but not B cells, promote autoimmune keratitis in b10 mice lacking γδ T cells, Investig. Ophthalmol. Vis. Sci., 53, 301, 10.1167/iovs.11-8855 O'Brien, 2009, Protective role of gammadelta T cells in spontaneous ocular inflammation, Investig. Ophthalmol. Vis. Sci., 50, 3266, 10.1167/iovs.08-2982 Zhang, 2012, NK cells promote Th-17 mediated corneal barrier disruption in dry eye, PLoS. One, 7, e36822, 10.1371/journal.pone.0036822 Zhang, 2014, CD8( + ) cells regulate the T helper-17 response in an experimental murine model of Sjogren syndrome, Mucosal. Immunol., 7, 417, 10.1038/mi.2013.61 Khandelwal, 2013, Ocular mucosal CD11b + and CD103 + mouse dendritic cells under normal conditions and in allergic immune responses, PloS One, 8, e64193, 10.1371/journal.pone.0064193 Liu, 2012, NK cells modulate the inflammatory response to corneal epithelial abrasion and thereby support wound healing, Am. J. Pathol., 181, 452, 10.1016/j.ajpath.2012.04.010 Bialasiewicz, 1996, Alpha/beta- and gamma/delta-T-cell-receptor-positive lymphocytes in healthy and inflamed human conjunctiva, Graefes Arch. Clin. Exp. Ophthalmol., 234, 467, 10.1007/BF02539415 Arnous, 2022, Tissue resident memory T cells inhabit the deep human conjunctiva, Sci. Rep., 12, 10.1038/s41598-022-09886-3 Alam, J. et al. Single-cell transcriptional profiling of murine conjunctival immune cells reveals distinct populations expressing homeostatic and regulatory genes. Mucosal Immunol.https://doi.org/10.1038/s41385-022-00507-w (2022). Waddell, 2019, IL-33 Induces Murine Intestinal Goblet Cell Differentiation Indirectly via Innate Lymphoid Cell IL-13 Secretion, J. Immunol., 202, 598, 10.4049/jimmunol.1800292 Li, 2007, W. gamma delta T cells are necessary for platelet and neutrophil accumulation in limbal vessels and efficient epithelial repair after corneal abrasion, Am. J. Pathol., 171, 838, 10.2353/ajpath.2007.070008 St Leger, 2017, An Ocular Commensal Protects against Corneal Infection by Driving an Interleukin-17 Response from Mucosal gammadelta T Cells, Immunity, 47, 148, 10.1016/j.immuni.2017.06.014 Alam, 2022, IL-17 Producing Lymphocytes Cause Dry Eye and Corneal Disease With Aging in RXRα Mutant Mouse, Front Med., 9, 849990, 10.3389/fmed.2022.849990 Shen, 2007, Effect of the ocular microenvironment in regulating corneal dendritic cell maturation, Arch. Ophthalmol., 125, 908, 10.1001/archopht.125.7.908 Ahadome, S. D. et al. Classical dendritic cells mediate fibrosis directly via the retinoic acid pathway in severe eye allergy. JCI insight1https://doi.org/10.1172/jci.insight.87012 (2016). Saban, D. R. et al. Deletion of Thrombospondin (TSP)-1 in Dendritic Cells (DC) of the Conjunctiva Exacerbates Allergic Conjunctivitis (AC). ARVO Meeting Abstracts 53, 1241 (2012). Hamrah, 2003, Corneal immunity is mediated by heterogeneous population of antigen-presenting cells, J. Leukoc. Biol., 74, 172, 10.1189/jlb.1102544 Jamali, 2020, Characterization of Resident Corneal Plasmacytoid Dendritic Cells and Their Pivotal Role in Herpes Simplex Keratitis, Cell Rep., 32, 108099, 10.1016/j.celrep.2020.108099 Jamali, A. et al. Plasmacytoid dendritic cells in the eye. Review. Prog Retin Eye Res80, 100877 (2021). Foulsham, W., Coco, G., Amouzegar, A., Chauhan, S. K. & Dana, R. When Clarity Is Crucial: Regulating Ocular Surface Immunity. Trend Immunol.https://doi.org/10.1016/j.it.2017.11.007 (2017). Lee, H. S., Amouzegar, A. & Dana, R. Kinetics of Corneal Antigen Presenting Cells in Experimental Dry Eye Disease. BMJ Open Ophthalmol.1https://doi.org/10.1136/bmjophth-2017-000078 (2017). Pian, 2020, Type 3 Innate Lymphoid Cells Direct Goblet Cell Differentiation via the LT-LTβR Pathway during Listeria Infection, J. Immunol., 205, 853, 10.4049/jimmunol.2000197 Yoon, 2018, Distribution of Interleukin-22-secreting Immune Cells in Conjunctival Associated Lymphoid Tissue, Korean J. Ophthalmol.: KJO, 32, 147, 10.3341/kjo.2017.0068 Ji, Y. W. et al. Lacrimal gland-derived IL-22 regulates IL-17-mediated ocular mucosal inflammation. Mucosal Immunol.https://doi.org/10.1038/mi.2016.119 (2017). de Paiva, 2011, Homeostatic control of conjunctival mucosal goblet cells by NKT-derived IL-13, Mucosal. Immunol., 4, 397, 10.1038/mi.2010.82 McCauley, 2015, Three cheers for the goblet cell: maintaining homeostasis in mucosal epithelia, Trends Mol. Med., 21, 492, 10.1016/j.molmed.2015.06.003 Pflugfelder, 2008, Effects of sequential artificial tear and cyclosporine emulsion therapy on conjunctival goblet cell density and transforming growth factor-beta2 production, Cornea, 27, 64, 10.1097/ICO.0b013e318158f6dc Barbosa, 2017, Goblet Cells Contribute to Ocular Surface Immune Tolerance-Implications for Dry Eye Disease, Int. J. Mol. Sci., 18, 1, 10.3390/ijms18050978 Ko, 2018, Goblet cell loss abrogates ocular surface immune tolerance, JCI Insight, 3, 98222, 10.1172/jci.insight.98222 Kulkarni, 2020, Goblet cell associated antigen passages support the induction and maintenance of oral tolerance, Mucosal Immunol., 13, 271, 10.1038/s41385-019-0240-7 Galletti, J. G. & de Paiva, C. S. Age-related changes in ocular mucosal tolerance: Lessons learned from gut and respiratory tract immunity. Immunologyhttps://doi.org/10.1111/imm.13338 (2021). de Paiva, 2007, Dry Eye-Induced Conjunctival Epithelial Squamous Metaplasia Is Modulated by Interferon-{gamma}, Investig. Ophthalmol. Vis. Sci., 48, 2553, 10.1167/iovs.07-0069 Garcia-Posadas, 2016, Interaction of IFN-gamma with cholinergic agonists to modulate rat and human goblet cell function, Mucosal Immunol., 9, 206, 10.1038/mi.2015.53 Zhang, 2014, Topical interferon-gamma neutralization prevents conjunctival goblet cell loss in experimental murine dry eye, Exp. Eye Res., 118, 117, 10.1016/j.exer.2013.11.011 Puro, 2018, Role of ion channels in the functional response of conjunctival goblet cells to dry eye, Am. J. Physiol. Cell Physiol., 315, C236, 10.1152/ajpcell.00077.2018 Coursey, 2016, Interferon-gamma-Induced Unfolded Protein Response in Conjunctival Goblet Cells as a Cause of Mucin Deficiency in Sjogren Syndrome, Am. J. Pathol., 186, 1547, 10.1016/j.ajpath.2016.02.004 Tukler Henriksson, 2015, IL-13 Stimulates Proliferation and Expression of Mucin and Immunomodulatory Genes in Cultured Conjunctival Goblet Cells, Investig. Ophthalmol. Vis. Sci., 56, 4186, 10.1167/iovs.14-15496 Marko, 2013, Spdef null mice lack conjunctival goblet cells and provide a model of dry eye, Am. J. Pathol., 183, 35, 10.1016/j.ajpath.2013.03.017 Dang, 2014, Soluble antigen traffics rapidly and selectively from the corneal surface to the eye draining lymph node and activates T cells when codelivered with CpG oligonucleotides, J. Leukoc. Biol., 95, 431, 10.1189/jlb.0612294 Stern, 2004, The role of the lacrimal functional unit in the pathophysiology of dry eye, Exp. Eye Res, 78, 409, 10.1016/j.exer.2003.09.003 Tsubota, 1996, Quantitative videographic analysis of blinking in normal subjects and patients with dry eye, Arch. Ophthalmol., 114, 715, 10.1001/archopht.1996.01100130707012 Tsubota, 1993, Dry eyes and video display terminals, N. Eng. J. Med., 328, 584, 10.1056/NEJM199302253280817 Loebis, 2021, Correlation between the exposure time to mobile devices and the prevalence of evaporative dry eyes as one of the symptoms of computer vision syndrome among Senior High School students in East Java, Indonesia, J. Basic Clin. Physiol. Pharmacol., 32, 541, 10.1515/jbcpp-2020-0478 de Paiva, 2016, Altered Mucosal Microbiome Diversity and Disease Severity in Sjogren Syndrome, Sci. Rep., 6, 23561, 10.1038/srep23561 Ozkan, 2018, Identification and Visualization of a Distinct Microbiome in Ocular Surface Conjunctival Tissue, Investig. Ophthalmol. Vis. Sci., 59, 4268, 10.1167/iovs.18-24651 Ozkan, 2019, The Ocular Microbiome: Molecular Characterization of a Unique and Low Microbial Environment, Curr. Eye Res., 44, 685, 10.1080/02713683.2019.1570526 Ozkan, J. et al. The Temporal Stability of the Ocular Surface Microbiome. ARVO Abstracts,2017, 5615 (2017). Nolan, 1967, Evaluation of conjunctival and nasal bacterial cultures before intra-ocular operations, Br. J. Ophthalmol., 51, 483, 10.1136/bjo.51.7.483 Willcox, 2013, Characterization of the normal microbiota of the ocular surface, Exp. Eye Res., 117, 99, 10.1016/j.exer.2013.06.003 Dong, 2011, Diversity of bacteria at healthy human conjunctiva, Investig. Ophthalmol. Vis. Sci., 52, 5408, 10.1167/iovs.10-6939 Wilbanks, 1992, Studies on the induction of anterior chamber-associated immune deviation (ACAID). III. Induction of ACAID depends upon intraocular transforming growth factor-beta, Eur. J. Immunol., 22, 165, 10.1002/eji.1830220125 Zhou, 2011, A new look at immune privilege of the eye: dual role for the vision-related molecule retinoic acid, J. Immunol., 187, 4170, 10.4049/jimmunol.1101634 Zhou, 2012, The living eye “disarms” uncommitted autoreactive T cells by converting them to Foxp3(+) regulatory cells following local antigen recognition, J. Immunol., 188, 1742, 10.4049/jimmunol.1102415 Taylor, 1994, Immunoreactive vasoactive intestinal peptide contributes to the immunosuppressive activity of normal aqueous humor, J. Immunol., 153, 1080, 10.4049/jimmunol.153.3.1080 Ferguson, 1995, Neuropeptides modulate immune deviation induced via the anterior chamber of the eye, J. Immunol., 155, 1746, 10.4049/jimmunol.155.4.1746 Griffith, 1996, CD95-induced apoptosis of lymphocytes in an immune privileged site induces immunological tolerance, Immunity, 5, 7, 10.1016/S1074-7613(00)80305-2 Volpe, E., Sambucci, M., Battistini, L. & Borsellino, G. Fas–Fas Ligand: Checkpoint of T Cell Functions in Multiple Sclerosis. Front Immunol.7https://doi.org/10.3389/fimmu.2016.00382 (2016). Bouillet, 2009, CD95, BIM and T cell homeostasis, Nat. Rev. Immunol., 9, 514, 10.1038/nri2570 Castro, 1996, Fas modulation of apoptosis during negative selection of thymocytes, Immunity, 5, 617, 10.1016/S1074-7613(00)80275-7 Refaeli, 1998, Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis, Immunity, 8, 615, 10.1016/S1074-7613(00)80566-X Choi, 2004, Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses, Brain Res Brain Res Rev., 44, 65, 10.1016/j.brainresrev.2003.08.007 Zheng, 2007, A novel role of IL-2 in organ-specific autoimmune inflammation beyond regulatory T cell checkpoint: both IL-2 knockout and Fas mutation prolong lifespan of Scurfy mice but by different mechanisms, J. Immunol., 179, 8035, 10.4049/jimmunol.179.12.8035 Esser, 1997, IL-2 induces Fas ligand/Fas (CD95L/CD95) cytotoxicity in CD8 + and CD4 + T lymphocyte clones, J. Immunol., 158, 5612, 10.4049/jimmunol.158.12.5612 Elzey, 2001, Regulation of Fas ligand-induced apoptosis by TNF, J. Immunol., 167, 3049, 10.4049/jimmunol.167.6.3049 Griffith, 1995, Fas ligand-induced apoptosis as a mechanism of immune privilege, Science, 270, 1189, 10.1126/science.270.5239.1189 Jabs, 2000, Th1 versus Th2 immune responses in autoimmune lacrimal gland disease in MRL/Mp mice, Investig. Ophthalmol. Vis. Sci., 41, 826 Jabs, 2007, Autoimmune Th2-mediated dacryoadenitis in MRL/MpJ mice becomes Th1-mediated in IL-4 deficient MRL/MpJ mice, Investig. Ophthalmol. Vis. Sci., 48, 5624, 10.1167/iovs.07-0237 Jie, 2010, Expression of interleukin-17 in autoimmune dacryoadenitis in MRL/lpr mice, Curr. Eye Res., 35, 865, 10.3109/02713683.2010.497600 Durrani, 2004, Degree, duration, and causes of visual loss in uveitis, Br. J. Ophthalmol., 88, 1159, 10.1136/bjo.2003.037226 Egan, 2000, In vivo behavior of peptide-specific T cells during mucosal tolerance induction: antigen introduced through the mucosa of the conjunctiva elicits prolonged antigen-specific T cell priming followed by anergy, J. Immunol., 164, 4543, 10.4049/jimmunol.164.9.4543 Galletti, 2013, Benzalkonium chloride breaks down conjunctival immunological tolerance in a murine model, Mucosal Immunol., 6, 24, 10.1038/mi.2012.44 Galletti, 2017, Mucosal immune tolerance at the ocular surface in health and disease, Immunology, 150, 397, 10.1111/imm.12716 Pflugfelder, 2005, Matrix metalloproteinase-9 knockout confers resistance to corneal epithelial barrier disruption in experimental dry eye, Am. J. Pathol., 166, 61, 10.1016/S0002-9440(10)62232-8 Hu, 2020, IL-33/ST2/IL-9/IL-9R signaling disrupts ocular surface barrier in allergic inflammation, Mucosal Immunol., 13, 919, 10.1038/s41385-020-0288-4 Akdis, C. A. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat. Rev. Immunol.https://doi.org/10.1038/s41577-021-00538-7 (2021). Friedman, 2018, Microbes vs. chemistry in the origin of the anaerobic gut lumen, Proc. Natl Acad. Sci. USA, 115, 4170, 10.1073/pnas.1718635115 Thursby, 2017, Introduction to the human gut microbiota, Biochemical J., 474, 1823, 10.1042/BCJ20160510 Goodrich, 2016, Genetic Determinants of the Gut Microbiome in UK Twins, Cell host microbe, 19, 731, 10.1016/j.chom.2016.04.017 Zarate-Blades, 2017, Gut microbiota as a source of a surrogate antigen that triggers autoimmunity in an immune privileged site, Gut microbes, 8, 59, 10.1080/19490976.2016.1273996 Dewhirst, 2010, The human oral microbiome, J. Bacteriol., 192, 5002, 10.1128/JB.00542-10 Deo, 2019, Oral microbiome: Unveiling the fundamentals, J. Oral. Maxillofac. Pathol., 23, 122, 10.4103/jomfp.JOMFP_304_18 Dutzan, N. et al. A dysbiotic microbiome triggers TH17 cells to mediate oral mucosal immunopathology in mice and humans. Sci. Transl. Med.10https://doi.org/10.1126/scitranslmed.aat0797 (2018). Byrd, 2018, The human skin microbiome, Nat. Rev. Microbiol, 16, 143, 10.1038/nrmicro.2017.157 Harrison, O. J. et al. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science363https://doi.org/10.1126/science.aat6280 (2019). Grice, 2011, The skin microbiome, Nat. Rev. Microbiol, 9, 244, 10.1038/nrmicro2537 Dickson, 2015, The Lung Microbiome: New Principles for Respiratory Bacteriology in Health and Disease, PLoS Pathog., 11, e1004923, 10.1371/journal.ppat.1004923 Kitsios, G. D. Translating Lung Microbiome Profiles into the Next-Generation Diagnostic Gold Standard for Pneumonia: a Clinical Investigator's Perspective. mSystems3https://doi.org/10.1128/mSystems.00153-17 (2018). Kitsios, 2020, Respiratory Tract Dysbiosis Is Associated with Worse Outcomes in Mechanically Ventilated Patients, Am. J. Respir. Crit. Care Med, 202, 1666, 10.1164/rccm.201912-2441OC Zhao, 2021, Microbiome Data Enhances Predictive Models of Lung Function in People With Cystic Fibrosis, J. Infect. Dis., 223, S246, 10.1093/infdis/jiaa655 Doan, 2016, Paucibacterial Microbiome and Resident DNA Virome of the Healthy Conjunctiva, Invest Ophthalmol. Vis. Sci., 57, 5116, 10.1167/iovs.16-19803 McDermott, 2013, Antimicrobial compounds in tears, Exp. Eye Res, 117, 53, 10.1016/j.exer.2013.07.014 Wan, 2020, Resistance of the murine cornea to bacterial colonization during experimental dry eye, PloS one, 15, e0234013, 10.1371/journal.pone.0234013 Shin, 2016, Changes in the Eye Microbiota Associated with Contact Lens Wearing, mBio, 7, e00198, 10.1128/mBio.00198-16 Cavuoto, K. M., Banerjee, S. & Galor, A. Relationship between the microbiome and ocular health. Ocul Surfhttps://doi.org/10.1016/j.jtos.2019.05.006 (2019). Prashanthi, G. S. et al. Alterations in the Ocular Surface Fungal Microbiome in Fungal Keratitis Patients. Microorganisms7https://doi.org/10.3390/microorganisms7090309 (2019). Ozkan, 2021, Comparative analysis of ocular surface tissue microbiome in human, mouse, rabbit, and guinea pig, Exp. Eye Res, 207, 108609, 10.1016/j.exer.2021.108609 Shanbhag, 2021, Diphtheroids as Corneal Pathogens in Chronic Ocular Surface Disease in Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis, Cornea, 40, 774, 10.1097/ICO.0000000000002696 Suzuki, 2020, The Microbiome of the Meibum and Ocular Surface in Healthy Subjects, Investigative Ophthalmol. Vis. Sci., 61, 18, 10.1167/iovs.61.2.18 Bernard, 2016, Corynebacterium lowii sp. nov. and Corynebacterium oculi sp. nov., derived from human clinical disease and an emended description of Corynebacterium mastitidis, Int J. Syst. Evol. Microbiol, 66, 2803, 10.1099/ijsem.0.001059 Kugadas, 2017, Role of Microbiota in Strengthening Ocular Mucosal Barrier Function Through Secretory IgA, Investig. Ophthalmol. Vis. Sci., 58, 4593, 10.1167/iovs.17-22119 Zaheer, M. et al. Protective role of commensal bacteria in Sjogren Syndrome. J. Autoimmun. 45–56, https://doi.org/10.1016/j.jaut.2018.06.004 (2018). Wang, C. et al. Sjogren-Like Lacrimal Keratoconjunctivitis in Germ-Free Mice. Int. J. Mol. Sci.19, pii: E565, https://doi.org/10.3390/ijms19020565 (2018). Jayasudha, 2018, Alterations in gut bacterial and fungal microbiomes are associated with bacterial Keratitis, an inflammatory disease of the human eye, J. Biosci., 43, 835, 10.1007/s12038-018-9798-6 Kalyana Chakravarthy, 2018, Alterations in the gut bacterial microbiome in fungal Keratitis patients, PloS one, 13, e0199640, 10.1371/journal.pone.0199640 Horai, 2015, Microbiota-Dependent Activation of an Autoreactive T Cell Receptor Provokes Autoimmunity in an Immunologically Privileged Site, Immunity, 43, 343, 10.1016/j.immuni.2015.07.014 Nakamura, 2016, Gut Microbial Alterations Associated With Protection From Autoimmune Uveitis, Investig. Ophthalmol. Vis. Sci., 57, 3747, 10.1167/iovs.16-19733 Tang, 2020, The role of commensal microflora-induced T cell responses in glaucoma neurodegeneration, Prog. Brain Res, 256, 79, 10.1016/bs.pbr.2020.06.002 Skrzypecki, 2021, Glaucoma patients have an increased level of trimethylamine, a toxic product of gut bacteria, in the aqueous humor: a pilot study, Int Ophthalmol., 41, 341, 10.1007/s10792-020-01587-y Zinkernagel, 2017, Association of the Intestinal Microbiome with the Development of Neovascular Age-Related Macular Degeneration, Sci. Rep., 7, 10.1038/srep40826 Rinninella, E. et al. The Role of Diet, Micronutrients and the Gut Microbiota in Age-Related Macular Degeneration: New Perspectives from the Gut(-)Retina Axis. Nutrients10https://doi.org/10.3390/nu10111677 (2018). Rowan, 2018, The Role of Microbiota in Retinal Disease, Adv. Exp. Med. Biol., 1074, 429, 10.1007/978-3-319-75402-4_53 Marfurt, 2010, Anatomy of the human corneal innervation, Exp. Eye Res, 90, 478, 10.1016/j.exer.2009.12.010 Muller, 2003, Corneal nerves: structure, contents and function, Exp. Eye Res, 76, 521, 10.1016/S0014-4835(03)00050-2 Yun, 2016, A Central Role for Sympathetic Nerves in Herpes Stromal Keratitis in Mice, Investig. Ophthalmol. Vis. Sci., 57, 1749, 10.1167/iovs.16-19183 Xue, 2018, The mouse autonomic nervous system modulates inflammation and epithelial renewal after corneal abrasion through the activation of distinct local macrophages, Mucosal Immunol., 11, 1496, 10.1038/s41385-018-0031-6 Mergler, 2010, TRPV channels mediate temperature-sensing in human corneal endothelial cells, Exp. Eye Res, 90, 758, 10.1016/j.exer.2010.03.010 Okada, 2015, Transient Receptor Potential Channels and Corneal Stromal Inflammation, Cornea, 34, S136, 10.1097/ICO.0000000000000602 Eguchi, 2017, Corneal Nerve Fiber Structure, Its Role in Corneal Function, and Its Changes in Corneal Diseases, BioMed. Res. Int., 2017, 3242649, 10.1155/2017/3242649 Yang, J. M., Wei, E. T., Kim, S. J. & Yoon, K. C. TRPM8 Channels and Dry Eye. Pharmaceuticals (Basel)11https://doi.org/10.3390/ph11040125 (2018). Yoon, H. J. et al. Topical TRPM8 Agonist for Relieving Neuropathic Ocular Pain in Patients with Dry Eye: A Pilot Study. J. Clin. Med.10https://doi.org/10.3390/jcm10020250 (2021). Guarino, 2020, The role of TRPV4 channels in ocular function and pathologies, Exp. Eye Res, 201, 108257, 10.1016/j.exer.2020.108257 Callejo, 2015, Acid-sensing ion channels detect moderate acidifications to induce ocular pain, Pain, 156, 483, 10.1097/01.j.pain.0000460335.49525.17 McMonnies, 2021, Diagnosis and remediation of blink inefficiency, Contact Lens anterior eye: J. Br. Contact Lens Assoc., 44, 101331, 10.1016/j.clae.2020.04.015 Bannier-Helaouet, 2021, Exploring the human lacrimal gland using organoids and single-cell sequencing, Cell Stem Cell, 28, 1221, 10.1016/j.stem.2021.02.024 Dikmetas, 2021, The Association between Meibomian Gland Atrophy and Corneal Subbasal Nerve Loss in Patients with Chronic Ocular Graft-versus-host Disease, Curr. eye Res., 46, 796, 10.1080/02713683.2020.1846754 Lee, 2021, Corneal lymphangiogenesis in dry eye disease is regulated by substance P/neurokinin-1 receptor system through controlling expression of vascular endothelial growth factor receptor 3, Ocul. Surf., 22, 72, 10.1016/j.jtos.2021.07.003 Yu, 2020, Neurokinin-1 Receptor Antagonism Ameliorates Dry Eye Disease by Inhibiting Antigen-Presenting Cell Maturation and T Helper 17 Cell Activation, Am. J. Pathol., 190, 125, 10.1016/j.ajpath.2019.09.020 Yuan, 2022, Sensory nerves promote corneal inflammation resolution via CGRP mediated transformation of macrophages to the M2 phenotype through the PI3K/AKT signaling pathway, Int. Immunopharmacol., 102, 108426, 10.1016/j.intimp.2021.108426 Mikulec, 1996, CGRP increases the rate of corneal re-epithelialization in an in vitro whole mount preparation, J. Ocul. Pharm. Ther., 12, 417, 10.1089/jop.1996.12.417 Diel, 2021, Photophobia: shared pathophysiology underlying dry eye disease, migraine and traumatic brain injury leading to central neuroplasticity of the trigeminothalamic pathway, Br. J. Ophthalmol., 105, 751, 10.1136/bjophthalmol-2020-316417 Lin, 2021, Pseudomonas aeruginosa-induced nociceptor activation increases susceptibility to infection, PLoS Pathog., 17, e1009557, 10.1371/journal.ppat.1009557 Sacchetti, 2011, Tear levels of neuropeptides increase after specific allergen challenge in allergic conjunctivitis, Mol. Vis., 17, 47 Berger, 2012, Effects of VIP on corneal reconstitution and homeostasis following Pseudomonas aeruginosa induced keratitis, Investig. Ophthalmol. Vis. Sci., 53, 7432, 10.1167/iovs.12-9894 Jiang, 2012, Vasoactive intestinal peptide downregulates proinflammatory TLRs while upregulating anti-inflammatory TLRs in the infected cornea, J. Immunol., 189, 269, 10.4049/jimmunol.1200365 Zhang, 2020, Role of VIP and Sonic Hedgehog Signaling Pathways in Mediating Epithelial Wound Healing, Sensory Nerve Regeneration, and Their Defects in Diabetic Corneas, Diabetes, 69, 1549, 10.2337/db19-0870 Hwang, D. D., Lee, S. J., Kim, J. H. & Lee, S. M. The Role of Neuropeptides in Pathogenesis of Dry Dye. J. Clin. Med.10https://doi.org/10.3390/jcm10184248 (2021). Geppetti, 2006, The transient receptor potential vanilloid 1: role in airway inflammation and disease, Eur. J. Pharmacol., 533, 207, 10.1016/j.ejphar.2005.12.063 Baral, 2018, Nociceptor sensory neurons suppress neutrophil and gammadelta T cell responses in bacterial lung infections and lethal pneumonia, Nat. Med., 24, 417, 10.1038/nm.4501 Guo, 2019, Increased expression of lung TRPV1/TRPA1 in a cough model of bleomycin-induced pulmonary fibrosis in Guinea pigs, BMC Pulm. Med, 19, 27, 10.1186/s12890-019-0792-z Sadofsky, 2012, Inflammatory stimuli up-regulate transient receptor potential vanilloid-1 expression in human bronchial fibroblasts, Exp. Lung Res., 38, 75, 10.3109/01902148.2011.644027 Zhang, 2008, Altered expression of TRPV1 and sensitivity to capsaicin in pulmonary myelinated afferents following chronic airway inflammation in the rat, J. Physiol., 586, 5771, 10.1113/jphysiol.2008.161042 Jiao, 2021, Distribution of Corneal TRPV1 and Its Association With Immune Cells During Homeostasis and Injury, Investig. Ophthalmol. Vis. Sci., 62, 6, 10.1167/iovs.62.9.6 Wan, 2021, Nerve-associated transient receptor potential ion channels can contribute to intrinsic resistance to bacterial adhesion in vivo, FASEB J., 35, e21899, 10.1096/fj.202100874R Trier, 2019, The Neuroimmune Axis in Skin Sensation, Inflammation, and Immunity, J. Immunol., 202, 2829, 10.4049/jimmunol.1801473 Cohen, 2019, Cutaneous TRPV1( + ) Neurons Trigger Protective Innate Type 17 Anticipatory Immunity, Cell, 178, 919, 10.1016/j.cell.2019.06.022 Zhang, 2021, Nonpeptidergic neurons suppress mast cells via glutamate to maintain skin homeostasis, Cell, 184, 2151, 10.1016/j.cell.2021.03.002 Wang, 2021, A basophil-neuronal axis promotes itch, Cell, 184, 422, 10.1016/j.cell.2020.12.033 Oetjen, 2017, Sensory Neurons Co-opt Classical Immune Signaling Pathways to Mediate Chronic Itch, Cell, 171, 217, 10.1016/j.cell.2017.08.006 Huang, 2018, Anatomical and functional dichotomy of ocular itch and pain, Nat. Med., 24, 1268, 10.1038/s41591-018-0083-x You, 2021, Intestinal Mucosal Barrier Is Regulated by Intestinal Tract Neuro-Immune Interplay, Front. Pharmacol., 12, 659716, 10.3389/fphar.2021.659716 Matheis, 2020, Adrenergic Signaling in Muscularis Macrophages Limits Infection-Induced Neuronal Loss, Cell, 180, 64, 10.1016/j.cell.2019.12.002 Yu, 2014, Enteric glial cells and their role in the intestinal epithelial barrier, World J. gastroenterology: WJG, 20, 11273, 10.3748/wjg.v20.i32.11273 Deng, 2021, Identification of an intraocular microbiota, Cell Discov., 7, 13, 10.1038/s41421-021-00245-6 Lairson, 2003, Prevention of herpes simplex virus eye disease: a cost-effectiveness analysis, Arch. Ophthalmol., 121, 108, 10.1001/archopht.121.1.108 Farooq, 2012, Herpes simplex epithelial and stromal keratitis: an epidemiologic update, Surv. Ophthalmol., 57, 448, 10.1016/j.survophthal.2012.01.005 Grinde, B. Herpesviruses: latency and reactivation - viral strategies and host response. J. Oral Microbiol5https://doi.org/10.3402/jom.v5i0.22766 (2013). Freeman, 2007, Psychological stress compromises CD8 + T cell control of latent herpes simplex virus type 1 infections, J. Immunol., 179, 322, 10.4049/jimmunol.179.1.322 Doll, 2020, Resolution of herpes simplex virus reactivation in vivo results in neuronal destruction, PLoS Pathog., 16, e1008296, 10.1371/journal.ppat.1008296 Doll, J. R., Thompson, R. L. & Sawtell, N. M. Infectious Herpes Simplex Virus in the Brain Stem Is Correlated with Reactivation in the Trigeminal Ganglia. J. Virol.93https://doi.org/10.1128/JVI.02209-18 (2019). Yin, X. T. et al. CD28 Costimulation Is Required for Development of Herpetic Stromal Keratitis but Does Not Prevent Establishment of Latency. J. Virol.93https://doi.org/10.1128/JVI.00659-19 (2019). Tajfirouz, 2017, CXCL9 compensates for the absence of CXCL10 during recurrent Herpetic stromal keratitis, Virology, 506, 7, 10.1016/j.virol.2017.02.022 Rogge, 2015, Therapeutic Use of Soluble Fas Ligand Ameliorates Acute and Recurrent Herpetic Stromal Keratitis in Mice, Investig. Ophthalmol. Vis. Sci., 56, 6377, 10.1167/iovs.15-16588 Donaghy, 2009, Role for plasmacytoid dendritic cells in the immune control of recurrent human herpes simplex virus infection, J. Virol., 83, 1952, 10.1128/JVI.01578-08 Moss, 2012, Peripheral blood CD4 T-cell and plasmacytoid dendritic cell (pDC) reactivity to herpes simplex virus 2 and pDC number do not correlate with the clinical or virologic severity of recurrent genital herpes, J. Virol., 86, 9952, 10.1128/JVI.00829-12 Li, 2006, Herpes simplex virus 1 infection induces the expression of proinflammatory cytokines, interferons and TLR7 in human corneal epithelial cells, Immunology, 117, 167, 10.1111/j.1365-2567.2005.02275.x Liu, 1996, Inflammatory infiltration of the trigeminal ganglion after herpes simplex virus type 1 corneal infection, J. Virol., 70, 264, 10.1128/jvi.70.1.264-271.1996 St Leger, 2013, Broadening the repertoire of functional herpes simplex virus type 1-specific CD8 + T cells reduces viral reactivation from latency in sensory ganglia, J. Immunol., 191, 2258, 10.4049/jimmunol.1300585 Sheridan, 2009, Reevaluating the CD8 T-cell response to herpes simplex virus type 1: involvement of CD8 T cells reactive to subdominant epitopes, J. Virol., 83, 2237, 10.1128/JVI.01699-08 Knickelbein, 2008, Noncytotoxic lytic granule-mediated CD8 + T cell inhibition of HSV-1 reactivation from neuronal latency, Science, 322, 268, 10.1126/science.1164164 Himmelein, 2011, Circulating herpes simplex type 1 (HSV-1)-specific CD8 + T cells do not access HSV-1 latently infected trigeminal ganglia, Herpesviridae, 2, 10.1186/2042-4280-2-5 Gmyrek, G. B. et al. Herpes Simplex Virus 1 (HSV-1) 0DeltaNLS Live-Attenuated Vaccine Protects against Ocular HSV-1 Infection in the Absence of Neutralizing Antibody in HSV-1 gB T Cell Receptor-Specific Transgenic Mice. J. Virol.94https://doi.org/10.1128/JVI.01000-20 (2020). Decman, 2005, Gamma interferon can block herpes simplex virus type 1 reactivation from latency, even in the presence of late gene expression, J. Virol., 79, 10339, 10.1128/JVI.79.16.10339-10347.2005 Frank, 2010, Early CD4( + ) T cell help prevents partial CD8( + ) T cell exhaustion and promotes maintenance of Herpes Simplex Virus 1 latency, J. Immunol., 184, 277, 10.4049/jimmunol.0902373 Lepisto, 2006, CD8 T cells mediate transient herpes stromal keratitis in CD4-deficient mice, Investig. Ophthalmol. Vis. Sci., 47, 3400, 10.1167/iovs.05-0898 Doymaz, 1992, Herpetic stromal keratitis: an immunopathologic disease mediated by CD4 + T lymphocytes, Investig. Ophthalmol. Vis. Sci., 33, 2165 Wuest, 2011, The herpes simplex virus-1 transactivator infected cell protein-4 drives VEGF-A dependent neovascularization, PLoS Pathog., 7, e1002278, 10.1371/journal.ppat.1002278 Yun, 2020, Production of the Cytokine VEGF-A by CD4( + ) T and Myeloid Cells Disrupts the Corneal Nerve Landscape and Promotes Herpes Stromal Keratitis, Immunity, 53, 1050, 10.1016/j.immuni.2020.10.013 Stepp, 2018, Reduced intraepithelial corneal nerve density and sensitivity accompany desiccating stress and aging in C57BL/6 mice, Exp. Eye Res., 169, 91, 10.1016/j.exer.2018.01.024 Chucair-Elliott, 2017, Colony Stimulating Factor-1 Receptor Expressing Cells Infiltrating the Cornea Control Corneal Nerve Degeneration in Response to HSV-1 Infection, Investig. Ophthalmol. Vis. Sci., 58, 4670, 10.1167/iovs.17-22159 Chucair-Elliott, 2016, IL-6 Contributes to Corneal Nerve Degeneration after Herpes Simplex Virus Type I Infection, Am. J. Pathol., 186, 2665, 10.1016/j.ajpath.2016.06.007 Royer, 2019, Complement and CD4( + ) T cells drive context-specific corneal sensory neuropathy, eLife, 8, e48378, 10.7554/eLife.48378 Paunicka, 2015, Severing corneal nerves in one eye induces sympathetic loss of immune privilege and promotes rejection of future corneal allografts placed in either eye, Am. J. Transplant.: Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg., 15, 1490, 10.1111/ajt.13240 Narayanan, 2006, Effect of hyperosmolality on beta-defensin gene expression by human corneal epithelial cells, Cornea, 25, 1063, 10.1097/01.ico.0000228785.84581.35 McDermott, 2009, The role of antimicrobial peptides at the ocular surface, Ophthalmic. Res., 41, 60, 10.1159/000187622 Garreis, 2010, Antimicrobial peptides as a major part of the innate immune defense at the ocular surface, Dev. Ophthalmol., 45, 16, 10.1159/000315016 Lu, 2020, Lactoferrin: A Critical Mediator of Both Host Immune Response and Antimicrobial Activity in Response to Streptococcal Infections, ACS Infect. Dis., 6, 1615, 10.1021/acsinfecdis.0c00050 Lai, 2022, Identified human breast milk compositions effectively inhibit SARS-CoV-2 and variants infection and replication, iScience, 25, 104136, 10.1016/j.isci.2022.104136 Dartt, 2011, Tear lipocalin: structure and function, Ocul. Surf., 9, 126, 10.1016/S1542-0124(11)70022-2 Fluckinger, 2004, Human tear lipocalin exhibits antimicrobial activity by scavenging microbial siderophores, Antimicrob. Agents Chemother., 48, 3367, 10.1128/AAC.48.9.3367-3372.2004 Deshpande, 2000, Dual role of B cells in mediating innate and acquired immunity to herpes simplex virus infections, Cell. Immunol., 202, 79, 10.1006/cimm.2000.1666 Deshpande, 2000, Pathogenesis of herpes simplex virus-induced ocular immunoinflammatory lesions in B-cell-deficient mice, J. Virol., 74, 3517, 10.1128/JVI.74.8.3517-3524.2000 Patel, C. D. et al. Trivalent Glycoprotein Subunit Vaccine Prevents Neonatal Herpes Simplex Virus Mortality and Morbidity. J. Virol.94https://doi.org/10.1128/JVI.02163-19 (2020). Patel, C. D. et al. Maternal immunization confers protection against neonatal herpes simplex mortality and behavioral morbidity. Sci. Transl. Med.11https://doi.org/10.1126/scitranslmed.aau6039 (2019). Kugadas, 2016, Impact of Microbiota on Resistance to Ocular Pseudomonas aeruginosa-Induced Keratitis, PLoS Pathog., 12, e1005855, 10.1371/journal.ppat.1005855 Kugadas, A. & Gadjeva, M. Impact of Microbiome on Ocular Health. Ocul. Surfhttps://doi.org/10.1016/j.jtos.2016.04.004 (2016). Trujillo-Vargas, 2020, The gut-eye-lacrimal gland-microbiome axis in Sjogren Syndrome, Ocul. Surf., 18, 335, 10.1016/j.jtos.2019.10.006 Moon, 2020, Gut dysbiosis is prevailing in Sjogren's syndrome and is related to dry eye severity, PloS one, 15, e0229029, 10.1371/journal.pone.0229029 Wang, 2019, Dysbiosis Modulates Ocular Surface Inflammatory Response to Liposaccharide, Investig. Ophthalmol. Vis. Sci., 60, 4224, 10.1167/iovs.19-27939 Markle, 2013, Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity, Science, 339, 1084, 10.1126/science.1233521 Wen, 2008, Innate immunity and intestinal microbiota in the development of Type 1 diabetes, Nature, 455, 1109, 10.1038/nature07336 Hansen, 2016, Cutting Edge: Commensal Microbiota Has Disparate Effects on Manifestations of Polyglandular Autoimmune Inflammation, J. Immunol., 197, 701, 10.4049/jimmunol.1502465 Hansen, 2019, Targeting gut microbiota and barrier function with prebiotics to alleviate autoimmune manifestations in NOD mice, Diabetologia, 62, 1689, 10.1007/s00125-019-4910-5 Pflugfelder, 2017, The Pathophysiology of Dry Eye Disease: What We Know and Future Directions for Research, Ophthalmology, 124, S4, 10.1016/j.ophtha.2017.07.010 Baudouin, 2013, Role of hyperosmolarity in the pathogenesis and management of dry eye disease: proceedings of the OCEAN group meeting, Ocul. Surf., 11, 246, 10.1016/j.jtos.2013.07.003 Zhou, 2012, Critical involvement of macrophage infiltration in the development of Sjogren's syndrome-associated dry eye, Am. J. Pathol., 181, 753, 10.1016/j.ajpath.2012.05.014 Schaumburg, 2011, Ocular surface APCs are necessary for autoreactive T cell-mediated experimental autoimmune lacrimal keratoconjunctivitis, J. Immunol., 187, 3653, 10.4049/jimmunol.1101442 Bron, A. J. et al. TFOS DEWS II pathophysiology report. Ocul. Surfhttps://doi.org/10.1016/j.jtos.2017.05.011 (2017). Li, 2004, Stimulation of matrix metalloproteinases by hyperosmolarity via a JNK pathway in human corneal epithelial cells, Investig. Ophthalmol. Vis. Sci., 45, 4302, 10.1167/iovs.04-0299 Julio, 2012, Effects of tear hyperosmolarity on conjunctival cells in mild to moderate dry eye, Ophthalmic Physiol. Opt., 32, 317, 10.1111/j.1475-1313.2012.00915.x Luo, 2005, Hyperosmolar saline is a proinflammatory stress on the mouse ocular surface, Eye Contact Lens, 31, 186, 10.1097/01.ICL.0000162759.79740.46 Wang, 2021, Melatonin ameliorates oxidative stress-mediated injuries through induction of HO-1 and restores autophagic flux in dry eye, Exp. Eye Res, 205, 108491, 10.1016/j.exer.2021.108491 Katsiougiannis, 2015, Endoplasmic reticulum stress causes autophagy and apoptosis leading to cellular redistribution of the autoantigens Ro/Sjögren's syndrome-related antigen A (SSA) and La/SSB in salivary gland epithelial cells, Clin. Exp. Immunol., 181, 244, 10.1111/cei.12638 Tsubota, 1999, Conjunctival epithelium expression of HLA-DR in dry eye patients, Ophthalmologica, 213, 16, 10.1159/000027387 Chauhan, 2009, Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression, J. Immunol., 182, 1247, 10.4049/jimmunol.182.3.1247 Pelegrino, 2012, Low humidity environmental challenge causes barrier disruption and cornification of the mouse corneal epithelium via a c-jun N-terminal kinase 2 (JNK2) pathway, Exp. Eye Res., 94, 150, 10.1016/j.exer.2011.11.022 Zhang, 2014, Peripheral role of cathepsin S in Th1 cell-dependent transition of nerve injury-induced acute pain to a chronic pain state, J. Neurosci.: Off. J. Soc. Neurosci., 34, 3013, 10.1523/JNEUROSCI.3681-13.2014 de Paiva, 2009, IL-17 disrupts corneal barrier following desiccating stress, Mucosal. Immunol., 2, 243, 10.1038/mi.2009.5 Cha, 2004, A dual role for interferon-gamma in the pathogenesis of Sjogren's syndrome-like autoimmune exocrinopathy in the nonobese diabetic mouse, Scand. J. Immunol., 60, 552, 10.1111/j.0300-9475.2004.01508.x Tsunawaki, 2002, Possible function of salivary gland epithelial cells as nonprofessional antigen-presenting cells in the development of Sjogren's syndrome, J. Rheumatol., 29, 1884 Meng, 2017, Interferon-gamma treatment in vitro elicits some of the changes in cathepsin S and antigen presentation characteristic of lacrimal glands and corneas from the NOD mouse model of Sjogren's Syndrome, PloS one, 12, e0184781, 10.1371/journal.pone.0184781 Heuberger, 2021, Why do intestinal epithelial cells express MHC class II, Immunology, 162, 357, 10.1111/imm.13270 Royer, 2018, Corneal Epithelial Cells Exhibit Myeloid Characteristics and Present Antigen via MHC Class II, Investigative Ophthalmol. Vis. Sci., 59, 1512, 10.1167/iovs.17-23279 Epstein, 2013, HLA-DR expression as a biomarker of inflammation for multicenter clinical trials of ocular surface disease, Exp. Eye Res., 111, 95, 10.1016/j.exer.2013.03.018 Versura, 2011, Hyperosmolar stress upregulates HLA-DR expression in human conjunctival epithelium in dry eye patients and in vitro models, Investig. Ophthalmol. Vis. Sci., 52, 5488, 10.1167/iovs.11-7215 Rolando, 2005, Distribution of Conjunctival HLA-DR Expression and the Pathogenesis of Damage in Early Dry Eyes, Cornea, 24, 951, 10.1097/01.ico.0000157421.93522.00 Jirsova, 2020, Aberrant HLA-DR expression in the conjunctival epithelium after autologous serum treatment in patients with graft-versus-host disease or Sjögren's syndrome, PloS one, 15, e0231473, 10.1371/journal.pone.0231473 Pisella, 2000, Flow cytometric analysis of conjunctival epithelium in ocular rosacea and keratoconjunctivitis sicca, Ophthalmology, 107, 1841, 10.1016/S0161-6420(00)00347-X Okuma, 2013, Enhanced apoptosis by disruption of the STAT3-IkappaB-zeta signaling pathway in epithelial cells induces Sjogren's syndrome-like autoimmune disease, Immunity, 38, 450, 10.1016/j.immuni.2012.11.016 Niederkorn, 2006, Desiccating Stress Induces T Cell-Mediated Sjogren's Syndrome-Like Lacrimal Keratoconjunctivitis, J. Immunol., 176, 3950, 10.4049/jimmunol.176.7.3950 de Paiva, 2006, Corticosteroid and doxycycline suppress MMP-9 and inflammatory cytokine expression, MAPK activation in the corneal epithelium in experimental dry eye, Exp. Eye Res., 83, 526, 10.1016/j.exer.2006.02.004 Luo, 2004, Experimental dry eye stimulates production of inflammatory cytokines and MMP-9 and activates MAPK signaling pathways on the ocular surface, Investig. Ophthalmol. Vis. Sci., 45, 4293, 10.1167/iovs.03-1145 de Paiva, 2009, Essential role for c-Jun N-terminal kinase 2 in corneal epithelial response to desiccating stress, Arch. Ophthalmol., 127, 1625, 10.1001/archophthalmol.2009.316 Redfern, 2013, Toll-like receptor expression and activation in mice with experimental dry eye, Investig. Ophthalmol. Vis. Sci., 54, 1554, 10.1167/iovs.12-10739 Chi, W. et al. Mitochondrial DNA oxidation induces imbalanced activity of NLRP3/NLRP6 inflammasomes by activation of caspase-8 and BRCC36 in dry eye. J. Autoimmun.80, 65–76 (2017). Reins, 2018, MyD88 Deficiency Protects Against Dry Eye-Induced Damage, Investig. Ophthalmol. Vis. Sci., 59, 2967, 10.1167/iovs.17-23397 Li, 2019, Expression and Role of Nucleotide-Binding Oligomerization Domain 2 (NOD2) in the Ocular Surface of Murine Dry Eye, Investig. Ophthalmol. Vis. Sci., 60, 2641, 10.1167/iovs.19-27144 Kiripolsky, 2017, Myd88 is required for disease development in a primary Sjogren's syndrome mouse model, J. Leukoc. Biol., 102, 1411, 10.1189/jlb.3A0717-311R Alam, 2020, Immune - Goblet cell interaction in the conjunctiva, Ocul. Surf., 18, 326, 10.1016/j.jtos.2019.12.006 Chen, Y. et al. IFN-gamma-Expressing Th17 Cells Are Required for Development of Severe Ocular Surface Autoimmunity. J. Immunol.https://doi.org/10.4049/jimmunol.1602144 (2017). Foulsham, 2018, Severe dry eye disease in aged mice is associated with an expanded memory Th17 cell response and higher frequencies of IFN-γ-expressing Th17 Cells, Investigative Ophthalmol. Vis. Sci., 59, 3286 You, 2015, Macrophage Phenotype in the Ocular Surface of Experimental Murine Dry Eye Disease, Archivum Immunol. et. therapiae experimentalis, 63, 299, 10.1007/s00005-015-0335-0 Alam, J., de Paiva, C. S. & Pflugfelder, S. C. Desiccation Induced Conjunctival Monocyte Recruitment and Activation - Implications for Keratoconjunctivitis. Front. Immunol.12https://doi.org/10.3389/fimmu.2021.701415 (2021). de Paiva, 2021, Differentially expressed gene pathways in the conjunctiva of Sjogren Syndrome Keratoconjunctivitis Sicca, Front. Immunol., 12, 702755, 10.3389/fimmu.2021.702755 Gao, 2004, ICAM-1 expression predisposes ocular tissues to immune-based inflammation in dry eye patients and Sjogrens syndrome-like MRL/lpr mice, Exp. Eye Res., 78, 823, 10.1016/j.exer.2003.10.024 Roescher, 2011, Effect of soluble ICAM-1 on a Sjögren's syndrome-like phenotype in NOD mice is disease stage dependent, PloS one, 6, e19962, 10.1371/journal.pone.0019962 Emamian, 2009, Peripheral blood gene expression profiling in Sjögren's syndrome, Genes Immun., 10, 285, 10.1038/gene.2009.20 Peck, 2012, Transcriptome analysis of the interferon-signature defining the autoimmune process of Sjogren's syndrome, Scand. J. Immunol., 76, 237, 10.1111/j.1365-3083.2012.02749.x Hall, 2012, Precise probes of type II interferon activity define the origin of interferon signatures in target tissues in rheumatic diseases, Proc. Natl Acad. Sci. USA, 109, 17609, 10.1073/pnas.1209724109 Mavragani, 2010, Activation of the type I interferon pathway in primary Sjogren's syndrome, J. Autoimmun., 35, 225, 10.1016/j.jaut.2010.06.012 Oyelakin, 2020, Transcriptomic and Network Analysis of Minor Salivary Glands of Patients With Primary Sjögren's Syndrome, Front. Immunol., 11, 606268, 10.3389/fimmu.2020.606268 Guzmán, M. et al. Transient tear hyperosmolarity disrupts the neuroimmune homeostasis of the ocular surface and facilitates dry eye onset. Immunologyhttps://doi.org/10.1111/imm.13243 (2020). Gestermann, 2010, STAT4 is a confirmed genetic risk factor for Sjögren's syndrome and could be involved in type 1 interferon pathway signaling, Genes Immun., 11, 432, 10.1038/gene.2010.29 Aydemir, 2019, The evaluation of the Myxovirus Resistance 1 protein in serum and saliva to monitor disease activation in primary Sjögren's syndrome, Clin. (Sao Paulo), 74, e631, 10.6061/clinics/2019/e631 Schraml, 2009, The AP-1 transcription factor Batf controls T(H)17 differentiation, Nature, 460, 405, 10.1038/nature08114 Perez, 2016, Lifitegrast, a Novel Integrin Antagonist for Treatment of Dry Eye Disease, Ocul. Surf., 14, 207, 10.1016/j.jtos.2016.01.001 Coursey, 2018, Once-Daily Cyclosporine-A-MiDROPS for Treatment of Dry Eye Disease, Transl. Vis. Sci. Technol., 7, 24, 10.1167/tvst.7.5.24 de Paiva, 2019, Topical cyclosporine A therapy for dry eye syndrome, Cochrane database Syst. Rev., 9, Cd010051 Chighizola, C. B., Ong, V. H. & Meroni, P. L. The Use of Cyclosporine A in Rheumatology: a 2016 Comprehensive Review. Clin. Rev. Allerg. Immunol.https://doi.org/10.1007/s12016-016-8582-3 (2016).