Mucosal immunology of the ocular surface
Tài liệu tham khảo
Sridhar, 2018, Anatomy of cornea and ocular surface, Indian J. Ophthalmol., 66, 190, 10.4103/ijo.IJO_646_17
Xiao, 2018, Goblet cell-produced retinoic acid suppresses CD86 expression and IL-12 production in bone marrow-derived cells, Int. Immunol., 30, 457, 10.1093/intimm/dxy045
Contreras-Ruiz, 2013, Modulation of conjunctival goblet cell function by inflammatory cytokines, Mediators Inflamm., 2013, 636812, 10.1155/2013/636812
Payne, 1994, The harderian gland: a tercentennial review, J. Anat., 185, 1
Knop, 2001, Lacrimal drainage-associated lymphoid tissue (LDALT): a part of the human mucosal immune system, Invest Ophthalmol. Vis. Sci., 42, 566
Knop, 2000, Conjunctiva-associated lymphoid tissue in the human eye, Investig. Ophthalmol. Vis. Sci., 41, 1270
Chodosh, 1998, Comparative anatomy of mammalian conjunctival lymphoid tissue: a putative mucosal immune site, Dev. Comp. Immunol., 22, 621, 10.1016/S0145-305X(98)00022-6
Knop, 2005, The role of eye-associated lymphoid tissue in corneal immune protection, J. Anat., 206, 271, 10.1111/j.1469-7580.2005.00394.x
Knop, 2008, Local production of secretory IgA in the eye-associated lymphoid tissue (EALT) of the normal human ocular surface, Investig. Ophthalmol. Vis. Sci., 49, 2322, 10.1167/iovs.07-0691
Schuh, 2021, Mucosa-Associated Lymphoid Tissue and Tertiary Lymphoid Structures of the Eye and Ear in Laboratory Animals, Toxicol. Pathol., 49, 472, 10.1177/0192623320970448
Allansmith, 1987, The immune response of the lacrimal gland to antigenic exposure, Curr. Eye Res., 6, 921, 10.3109/02713688709034860
Gudmundsson, 1988, T-lymphocyte subsets in the human lacrimal gland, Acta Ophthalmologica, 66, 19, 10.1111/j.1755-3768.1988.tb08528.x
Gudmundsson, 1988, T cell populations in the lacrimal gland during aging, Acta Ophthalmologica, 66, 490, 10.1111/j.1755-3768.1988.tb04369.x
Nasu, 1984, Post-mortem prevalence of lymphocytic infiltration of the lacrymal gland: a comparative study in autoimmune and non-autoimmune diseases, J. Pathol., 143, 11, 10.1002/path.1711430104
Damato, 1984, Senile atrophy of the human lacrimal gland: the contribution of chronic inflammatory disease, Br. J. Ophthalmol., 68, 674, 10.1136/bjo.68.9.674
Obata, 2006, Anatomy and histopathology of the human lacrimal gland, Cornea, 25, S82, 10.1097/01.ico.0000247220.18295.d3
Obata, 1995, Histopathologic study of human lacrimal gland, Stat. Anal. Spec. Ref. aging Ophthalmol., 102, 678
Trujillo-Vargas, C. M. et al. Immune phenotype of the CD4 + T cells in the aged lymphoid organs and lacrimal glands. GeroSciencehttps://doi.org/10.1007/s11357-022-00529-z (2022).
Steven, 2008, Experimental induction and three-dimensional two-photon imaging of conjunctiva-associated lymphoid tissue, Investig. Ophthalmol. Vis. Sci., 49, 1512, 10.1167/iovs.07-0809
Siebelmann, 2013, Development, alteration and real time dynamics of conjunctiva-associated lymphoid tissue, PloS One, 8, e82355, 10.1371/journal.pone.0082355
Steven, 2009, Conjunctiva-associated lymphoid tissue - current knowledge, animal models and experimental prospects, Ophthalmic Res., 42, 2, 10.1159/000219678
Steven, P. et al. Disease-Specific Expression of Conjunctiva Associated Lymphoid Tissue (CALT) in Mouse Models of Dry Eye Disease and Ocular Allergy. Int. J. Mol. Sci.21https://doi.org/10.3390/ijms21207514 (2020).
Hingorani, 1997, Characterisation of the normal conjunctival leukocyte population, Exp. Eye Res., 64, 905, 10.1006/exer.1996.0280
Hingorani, 1998, The role of conjunctival epithelial cells in chronic ocular allergic disease, Exp. Eye Res., 67, 491, 10.1006/exer.1998.0528
Dua, 1995, The ocular surface as part of the mucosal immune system: conjunctival mucosa-specific lymphocytes in ocular surface pathology, Eye, 9, 261, 10.1038/eye.1995.51
Coursey, 2017, Age-related spontaneous lacrimal keratoconjunctivitis is accompanied by dysfunctional T regulatory cells, Mucosal Immunol., 10, 743, 10.1038/mi.2016.83
O'Brien, 2012, αβ TCR+ T cells, but not B cells, promote autoimmune keratitis in b10 mice lacking γδ T cells, Investig. Ophthalmol. Vis. Sci., 53, 301, 10.1167/iovs.11-8855
O'Brien, 2009, Protective role of gammadelta T cells in spontaneous ocular inflammation, Investig. Ophthalmol. Vis. Sci., 50, 3266, 10.1167/iovs.08-2982
Zhang, 2012, NK cells promote Th-17 mediated corneal barrier disruption in dry eye, PLoS. One, 7, e36822, 10.1371/journal.pone.0036822
Zhang, 2014, CD8( + ) cells regulate the T helper-17 response in an experimental murine model of Sjogren syndrome, Mucosal. Immunol., 7, 417, 10.1038/mi.2013.61
Khandelwal, 2013, Ocular mucosal CD11b + and CD103 + mouse dendritic cells under normal conditions and in allergic immune responses, PloS One, 8, e64193, 10.1371/journal.pone.0064193
Liu, 2012, NK cells modulate the inflammatory response to corneal epithelial abrasion and thereby support wound healing, Am. J. Pathol., 181, 452, 10.1016/j.ajpath.2012.04.010
Bialasiewicz, 1996, Alpha/beta- and gamma/delta-T-cell-receptor-positive lymphocytes in healthy and inflamed human conjunctiva, Graefes Arch. Clin. Exp. Ophthalmol., 234, 467, 10.1007/BF02539415
Arnous, 2022, Tissue resident memory T cells inhabit the deep human conjunctiva, Sci. Rep., 12, 10.1038/s41598-022-09886-3
Alam, J. et al. Single-cell transcriptional profiling of murine conjunctival immune cells reveals distinct populations expressing homeostatic and regulatory genes. Mucosal Immunol.https://doi.org/10.1038/s41385-022-00507-w (2022).
Waddell, 2019, IL-33 Induces Murine Intestinal Goblet Cell Differentiation Indirectly via Innate Lymphoid Cell IL-13 Secretion, J. Immunol., 202, 598, 10.4049/jimmunol.1800292
Li, 2007, W. gamma delta T cells are necessary for platelet and neutrophil accumulation in limbal vessels and efficient epithelial repair after corneal abrasion, Am. J. Pathol., 171, 838, 10.2353/ajpath.2007.070008
St Leger, 2017, An Ocular Commensal Protects against Corneal Infection by Driving an Interleukin-17 Response from Mucosal gammadelta T Cells, Immunity, 47, 148, 10.1016/j.immuni.2017.06.014
Alam, 2022, IL-17 Producing Lymphocytes Cause Dry Eye and Corneal Disease With Aging in RXRα Mutant Mouse, Front Med., 9, 849990, 10.3389/fmed.2022.849990
Shen, 2007, Effect of the ocular microenvironment in regulating corneal dendritic cell maturation, Arch. Ophthalmol., 125, 908, 10.1001/archopht.125.7.908
Ahadome, S. D. et al. Classical dendritic cells mediate fibrosis directly via the retinoic acid pathway in severe eye allergy. JCI insight1https://doi.org/10.1172/jci.insight.87012 (2016).
Saban, D. R. et al. Deletion of Thrombospondin (TSP)-1 in Dendritic Cells (DC) of the Conjunctiva Exacerbates Allergic Conjunctivitis (AC). ARVO Meeting Abstracts 53, 1241 (2012).
Hamrah, 2003, Corneal immunity is mediated by heterogeneous population of antigen-presenting cells, J. Leukoc. Biol., 74, 172, 10.1189/jlb.1102544
Jamali, 2020, Characterization of Resident Corneal Plasmacytoid Dendritic Cells and Their Pivotal Role in Herpes Simplex Keratitis, Cell Rep., 32, 108099, 10.1016/j.celrep.2020.108099
Jamali, A. et al. Plasmacytoid dendritic cells in the eye. Review. Prog Retin Eye Res80, 100877 (2021).
Foulsham, W., Coco, G., Amouzegar, A., Chauhan, S. K. & Dana, R. When Clarity Is Crucial: Regulating Ocular Surface Immunity. Trend Immunol.https://doi.org/10.1016/j.it.2017.11.007 (2017).
Lee, H. S., Amouzegar, A. & Dana, R. Kinetics of Corneal Antigen Presenting Cells in Experimental Dry Eye Disease. BMJ Open Ophthalmol.1https://doi.org/10.1136/bmjophth-2017-000078 (2017).
Pian, 2020, Type 3 Innate Lymphoid Cells Direct Goblet Cell Differentiation via the LT-LTβR Pathway during Listeria Infection, J. Immunol., 205, 853, 10.4049/jimmunol.2000197
Yoon, 2018, Distribution of Interleukin-22-secreting Immune Cells in Conjunctival Associated Lymphoid Tissue, Korean J. Ophthalmol.: KJO, 32, 147, 10.3341/kjo.2017.0068
Ji, Y. W. et al. Lacrimal gland-derived IL-22 regulates IL-17-mediated ocular mucosal inflammation. Mucosal Immunol.https://doi.org/10.1038/mi.2016.119 (2017).
de Paiva, 2011, Homeostatic control of conjunctival mucosal goblet cells by NKT-derived IL-13, Mucosal. Immunol., 4, 397, 10.1038/mi.2010.82
McCauley, 2015, Three cheers for the goblet cell: maintaining homeostasis in mucosal epithelia, Trends Mol. Med., 21, 492, 10.1016/j.molmed.2015.06.003
Pflugfelder, 2008, Effects of sequential artificial tear and cyclosporine emulsion therapy on conjunctival goblet cell density and transforming growth factor-beta2 production, Cornea, 27, 64, 10.1097/ICO.0b013e318158f6dc
Barbosa, 2017, Goblet Cells Contribute to Ocular Surface Immune Tolerance-Implications for Dry Eye Disease, Int. J. Mol. Sci., 18, 1, 10.3390/ijms18050978
Ko, 2018, Goblet cell loss abrogates ocular surface immune tolerance, JCI Insight, 3, 98222, 10.1172/jci.insight.98222
Kulkarni, 2020, Goblet cell associated antigen passages support the induction and maintenance of oral tolerance, Mucosal Immunol., 13, 271, 10.1038/s41385-019-0240-7
Galletti, J. G. & de Paiva, C. S. Age-related changes in ocular mucosal tolerance: Lessons learned from gut and respiratory tract immunity. Immunologyhttps://doi.org/10.1111/imm.13338 (2021).
de Paiva, 2007, Dry Eye-Induced Conjunctival Epithelial Squamous Metaplasia Is Modulated by Interferon-{gamma}, Investig. Ophthalmol. Vis. Sci., 48, 2553, 10.1167/iovs.07-0069
Garcia-Posadas, 2016, Interaction of IFN-gamma with cholinergic agonists to modulate rat and human goblet cell function, Mucosal Immunol., 9, 206, 10.1038/mi.2015.53
Zhang, 2014, Topical interferon-gamma neutralization prevents conjunctival goblet cell loss in experimental murine dry eye, Exp. Eye Res., 118, 117, 10.1016/j.exer.2013.11.011
Puro, 2018, Role of ion channels in the functional response of conjunctival goblet cells to dry eye, Am. J. Physiol. Cell Physiol., 315, C236, 10.1152/ajpcell.00077.2018
Coursey, 2016, Interferon-gamma-Induced Unfolded Protein Response in Conjunctival Goblet Cells as a Cause of Mucin Deficiency in Sjogren Syndrome, Am. J. Pathol., 186, 1547, 10.1016/j.ajpath.2016.02.004
Tukler Henriksson, 2015, IL-13 Stimulates Proliferation and Expression of Mucin and Immunomodulatory Genes in Cultured Conjunctival Goblet Cells, Investig. Ophthalmol. Vis. Sci., 56, 4186, 10.1167/iovs.14-15496
Marko, 2013, Spdef null mice lack conjunctival goblet cells and provide a model of dry eye, Am. J. Pathol., 183, 35, 10.1016/j.ajpath.2013.03.017
Dang, 2014, Soluble antigen traffics rapidly and selectively from the corneal surface to the eye draining lymph node and activates T cells when codelivered with CpG oligonucleotides, J. Leukoc. Biol., 95, 431, 10.1189/jlb.0612294
Stern, 2004, The role of the lacrimal functional unit in the pathophysiology of dry eye, Exp. Eye Res, 78, 409, 10.1016/j.exer.2003.09.003
Tsubota, 1996, Quantitative videographic analysis of blinking in normal subjects and patients with dry eye, Arch. Ophthalmol., 114, 715, 10.1001/archopht.1996.01100130707012
Tsubota, 1993, Dry eyes and video display terminals, N. Eng. J. Med., 328, 584, 10.1056/NEJM199302253280817
Loebis, 2021, Correlation between the exposure time to mobile devices and the prevalence of evaporative dry eyes as one of the symptoms of computer vision syndrome among Senior High School students in East Java, Indonesia, J. Basic Clin. Physiol. Pharmacol., 32, 541, 10.1515/jbcpp-2020-0478
de Paiva, 2016, Altered Mucosal Microbiome Diversity and Disease Severity in Sjogren Syndrome, Sci. Rep., 6, 23561, 10.1038/srep23561
Ozkan, 2018, Identification and Visualization of a Distinct Microbiome in Ocular Surface Conjunctival Tissue, Investig. Ophthalmol. Vis. Sci., 59, 4268, 10.1167/iovs.18-24651
Ozkan, 2019, The Ocular Microbiome: Molecular Characterization of a Unique and Low Microbial Environment, Curr. Eye Res., 44, 685, 10.1080/02713683.2019.1570526
Ozkan, J. et al. The Temporal Stability of the Ocular Surface Microbiome. ARVO Abstracts,2017, 5615 (2017).
Nolan, 1967, Evaluation of conjunctival and nasal bacterial cultures before intra-ocular operations, Br. J. Ophthalmol., 51, 483, 10.1136/bjo.51.7.483
Willcox, 2013, Characterization of the normal microbiota of the ocular surface, Exp. Eye Res., 117, 99, 10.1016/j.exer.2013.06.003
Dong, 2011, Diversity of bacteria at healthy human conjunctiva, Investig. Ophthalmol. Vis. Sci., 52, 5408, 10.1167/iovs.10-6939
Wilbanks, 1992, Studies on the induction of anterior chamber-associated immune deviation (ACAID). III. Induction of ACAID depends upon intraocular transforming growth factor-beta, Eur. J. Immunol., 22, 165, 10.1002/eji.1830220125
Zhou, 2011, A new look at immune privilege of the eye: dual role for the vision-related molecule retinoic acid, J. Immunol., 187, 4170, 10.4049/jimmunol.1101634
Zhou, 2012, The living eye “disarms” uncommitted autoreactive T cells by converting them to Foxp3(+) regulatory cells following local antigen recognition, J. Immunol., 188, 1742, 10.4049/jimmunol.1102415
Taylor, 1994, Immunoreactive vasoactive intestinal peptide contributes to the immunosuppressive activity of normal aqueous humor, J. Immunol., 153, 1080, 10.4049/jimmunol.153.3.1080
Ferguson, 1995, Neuropeptides modulate immune deviation induced via the anterior chamber of the eye, J. Immunol., 155, 1746, 10.4049/jimmunol.155.4.1746
Griffith, 1996, CD95-induced apoptosis of lymphocytes in an immune privileged site induces immunological tolerance, Immunity, 5, 7, 10.1016/S1074-7613(00)80305-2
Volpe, E., Sambucci, M., Battistini, L. & Borsellino, G. Fas–Fas Ligand: Checkpoint of T Cell Functions in Multiple Sclerosis. Front Immunol.7https://doi.org/10.3389/fimmu.2016.00382 (2016).
Bouillet, 2009, CD95, BIM and T cell homeostasis, Nat. Rev. Immunol., 9, 514, 10.1038/nri2570
Castro, 1996, Fas modulation of apoptosis during negative selection of thymocytes, Immunity, 5, 617, 10.1016/S1074-7613(00)80275-7
Refaeli, 1998, Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis, Immunity, 8, 615, 10.1016/S1074-7613(00)80566-X
Choi, 2004, Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses, Brain Res Brain Res Rev., 44, 65, 10.1016/j.brainresrev.2003.08.007
Zheng, 2007, A novel role of IL-2 in organ-specific autoimmune inflammation beyond regulatory T cell checkpoint: both IL-2 knockout and Fas mutation prolong lifespan of Scurfy mice but by different mechanisms, J. Immunol., 179, 8035, 10.4049/jimmunol.179.12.8035
Esser, 1997, IL-2 induces Fas ligand/Fas (CD95L/CD95) cytotoxicity in CD8 + and CD4 + T lymphocyte clones, J. Immunol., 158, 5612, 10.4049/jimmunol.158.12.5612
Elzey, 2001, Regulation of Fas ligand-induced apoptosis by TNF, J. Immunol., 167, 3049, 10.4049/jimmunol.167.6.3049
Griffith, 1995, Fas ligand-induced apoptosis as a mechanism of immune privilege, Science, 270, 1189, 10.1126/science.270.5239.1189
Jabs, 2000, Th1 versus Th2 immune responses in autoimmune lacrimal gland disease in MRL/Mp mice, Investig. Ophthalmol. Vis. Sci., 41, 826
Jabs, 2007, Autoimmune Th2-mediated dacryoadenitis in MRL/MpJ mice becomes Th1-mediated in IL-4 deficient MRL/MpJ mice, Investig. Ophthalmol. Vis. Sci., 48, 5624, 10.1167/iovs.07-0237
Jie, 2010, Expression of interleukin-17 in autoimmune dacryoadenitis in MRL/lpr mice, Curr. Eye Res., 35, 865, 10.3109/02713683.2010.497600
Durrani, 2004, Degree, duration, and causes of visual loss in uveitis, Br. J. Ophthalmol., 88, 1159, 10.1136/bjo.2003.037226
Egan, 2000, In vivo behavior of peptide-specific T cells during mucosal tolerance induction: antigen introduced through the mucosa of the conjunctiva elicits prolonged antigen-specific T cell priming followed by anergy, J. Immunol., 164, 4543, 10.4049/jimmunol.164.9.4543
Galletti, 2013, Benzalkonium chloride breaks down conjunctival immunological tolerance in a murine model, Mucosal Immunol., 6, 24, 10.1038/mi.2012.44
Galletti, 2017, Mucosal immune tolerance at the ocular surface in health and disease, Immunology, 150, 397, 10.1111/imm.12716
Pflugfelder, 2005, Matrix metalloproteinase-9 knockout confers resistance to corneal epithelial barrier disruption in experimental dry eye, Am. J. Pathol., 166, 61, 10.1016/S0002-9440(10)62232-8
Hu, 2020, IL-33/ST2/IL-9/IL-9R signaling disrupts ocular surface barrier in allergic inflammation, Mucosal Immunol., 13, 919, 10.1038/s41385-020-0288-4
Akdis, C. A. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat. Rev. Immunol.https://doi.org/10.1038/s41577-021-00538-7 (2021).
Friedman, 2018, Microbes vs. chemistry in the origin of the anaerobic gut lumen, Proc. Natl Acad. Sci. USA, 115, 4170, 10.1073/pnas.1718635115
Thursby, 2017, Introduction to the human gut microbiota, Biochemical J., 474, 1823, 10.1042/BCJ20160510
Goodrich, 2016, Genetic Determinants of the Gut Microbiome in UK Twins, Cell host microbe, 19, 731, 10.1016/j.chom.2016.04.017
Zarate-Blades, 2017, Gut microbiota as a source of a surrogate antigen that triggers autoimmunity in an immune privileged site, Gut microbes, 8, 59, 10.1080/19490976.2016.1273996
Dewhirst, 2010, The human oral microbiome, J. Bacteriol., 192, 5002, 10.1128/JB.00542-10
Deo, 2019, Oral microbiome: Unveiling the fundamentals, J. Oral. Maxillofac. Pathol., 23, 122, 10.4103/jomfp.JOMFP_304_18
Dutzan, N. et al. A dysbiotic microbiome triggers TH17 cells to mediate oral mucosal immunopathology in mice and humans. Sci. Transl. Med.10https://doi.org/10.1126/scitranslmed.aat0797 (2018).
Byrd, 2018, The human skin microbiome, Nat. Rev. Microbiol, 16, 143, 10.1038/nrmicro.2017.157
Harrison, O. J. et al. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science363https://doi.org/10.1126/science.aat6280 (2019).
Grice, 2011, The skin microbiome, Nat. Rev. Microbiol, 9, 244, 10.1038/nrmicro2537
Dickson, 2015, The Lung Microbiome: New Principles for Respiratory Bacteriology in Health and Disease, PLoS Pathog., 11, e1004923, 10.1371/journal.ppat.1004923
Kitsios, G. D. Translating Lung Microbiome Profiles into the Next-Generation Diagnostic Gold Standard for Pneumonia: a Clinical Investigator's Perspective. mSystems3https://doi.org/10.1128/mSystems.00153-17 (2018).
Kitsios, 2020, Respiratory Tract Dysbiosis Is Associated with Worse Outcomes in Mechanically Ventilated Patients, Am. J. Respir. Crit. Care Med, 202, 1666, 10.1164/rccm.201912-2441OC
Zhao, 2021, Microbiome Data Enhances Predictive Models of Lung Function in People With Cystic Fibrosis, J. Infect. Dis., 223, S246, 10.1093/infdis/jiaa655
Doan, 2016, Paucibacterial Microbiome and Resident DNA Virome of the Healthy Conjunctiva, Invest Ophthalmol. Vis. Sci., 57, 5116, 10.1167/iovs.16-19803
McDermott, 2013, Antimicrobial compounds in tears, Exp. Eye Res, 117, 53, 10.1016/j.exer.2013.07.014
Wan, 2020, Resistance of the murine cornea to bacterial colonization during experimental dry eye, PloS one, 15, e0234013, 10.1371/journal.pone.0234013
Shin, 2016, Changes in the Eye Microbiota Associated with Contact Lens Wearing, mBio, 7, e00198, 10.1128/mBio.00198-16
Cavuoto, K. M., Banerjee, S. & Galor, A. Relationship between the microbiome and ocular health. Ocul Surfhttps://doi.org/10.1016/j.jtos.2019.05.006 (2019).
Prashanthi, G. S. et al. Alterations in the Ocular Surface Fungal Microbiome in Fungal Keratitis Patients. Microorganisms7https://doi.org/10.3390/microorganisms7090309 (2019).
Ozkan, 2021, Comparative analysis of ocular surface tissue microbiome in human, mouse, rabbit, and guinea pig, Exp. Eye Res, 207, 108609, 10.1016/j.exer.2021.108609
Shanbhag, 2021, Diphtheroids as Corneal Pathogens in Chronic Ocular Surface Disease in Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis, Cornea, 40, 774, 10.1097/ICO.0000000000002696
Suzuki, 2020, The Microbiome of the Meibum and Ocular Surface in Healthy Subjects, Investigative Ophthalmol. Vis. Sci., 61, 18, 10.1167/iovs.61.2.18
Bernard, 2016, Corynebacterium lowii sp. nov. and Corynebacterium oculi sp. nov., derived from human clinical disease and an emended description of Corynebacterium mastitidis, Int J. Syst. Evol. Microbiol, 66, 2803, 10.1099/ijsem.0.001059
Kugadas, 2017, Role of Microbiota in Strengthening Ocular Mucosal Barrier Function Through Secretory IgA, Investig. Ophthalmol. Vis. Sci., 58, 4593, 10.1167/iovs.17-22119
Zaheer, M. et al. Protective role of commensal bacteria in Sjogren Syndrome. J. Autoimmun. 45–56, https://doi.org/10.1016/j.jaut.2018.06.004 (2018).
Wang, C. et al. Sjogren-Like Lacrimal Keratoconjunctivitis in Germ-Free Mice. Int. J. Mol. Sci.19, pii: E565, https://doi.org/10.3390/ijms19020565 (2018).
Jayasudha, 2018, Alterations in gut bacterial and fungal microbiomes are associated with bacterial Keratitis, an inflammatory disease of the human eye, J. Biosci., 43, 835, 10.1007/s12038-018-9798-6
Kalyana Chakravarthy, 2018, Alterations in the gut bacterial microbiome in fungal Keratitis patients, PloS one, 13, e0199640, 10.1371/journal.pone.0199640
Horai, 2015, Microbiota-Dependent Activation of an Autoreactive T Cell Receptor Provokes Autoimmunity in an Immunologically Privileged Site, Immunity, 43, 343, 10.1016/j.immuni.2015.07.014
Nakamura, 2016, Gut Microbial Alterations Associated With Protection From Autoimmune Uveitis, Investig. Ophthalmol. Vis. Sci., 57, 3747, 10.1167/iovs.16-19733
Tang, 2020, The role of commensal microflora-induced T cell responses in glaucoma neurodegeneration, Prog. Brain Res, 256, 79, 10.1016/bs.pbr.2020.06.002
Skrzypecki, 2021, Glaucoma patients have an increased level of trimethylamine, a toxic product of gut bacteria, in the aqueous humor: a pilot study, Int Ophthalmol., 41, 341, 10.1007/s10792-020-01587-y
Zinkernagel, 2017, Association of the Intestinal Microbiome with the Development of Neovascular Age-Related Macular Degeneration, Sci. Rep., 7, 10.1038/srep40826
Rinninella, E. et al. The Role of Diet, Micronutrients and the Gut Microbiota in Age-Related Macular Degeneration: New Perspectives from the Gut(-)Retina Axis. Nutrients10https://doi.org/10.3390/nu10111677 (2018).
Rowan, 2018, The Role of Microbiota in Retinal Disease, Adv. Exp. Med. Biol., 1074, 429, 10.1007/978-3-319-75402-4_53
Marfurt, 2010, Anatomy of the human corneal innervation, Exp. Eye Res, 90, 478, 10.1016/j.exer.2009.12.010
Muller, 2003, Corneal nerves: structure, contents and function, Exp. Eye Res, 76, 521, 10.1016/S0014-4835(03)00050-2
Yun, 2016, A Central Role for Sympathetic Nerves in Herpes Stromal Keratitis in Mice, Investig. Ophthalmol. Vis. Sci., 57, 1749, 10.1167/iovs.16-19183
Xue, 2018, The mouse autonomic nervous system modulates inflammation and epithelial renewal after corneal abrasion through the activation of distinct local macrophages, Mucosal Immunol., 11, 1496, 10.1038/s41385-018-0031-6
Mergler, 2010, TRPV channels mediate temperature-sensing in human corneal endothelial cells, Exp. Eye Res, 90, 758, 10.1016/j.exer.2010.03.010
Okada, 2015, Transient Receptor Potential Channels and Corneal Stromal Inflammation, Cornea, 34, S136, 10.1097/ICO.0000000000000602
Eguchi, 2017, Corneal Nerve Fiber Structure, Its Role in Corneal Function, and Its Changes in Corneal Diseases, BioMed. Res. Int., 2017, 3242649, 10.1155/2017/3242649
Yang, J. M., Wei, E. T., Kim, S. J. & Yoon, K. C. TRPM8 Channels and Dry Eye. Pharmaceuticals (Basel)11https://doi.org/10.3390/ph11040125 (2018).
Yoon, H. J. et al. Topical TRPM8 Agonist for Relieving Neuropathic Ocular Pain in Patients with Dry Eye: A Pilot Study. J. Clin. Med.10https://doi.org/10.3390/jcm10020250 (2021).
Guarino, 2020, The role of TRPV4 channels in ocular function and pathologies, Exp. Eye Res, 201, 108257, 10.1016/j.exer.2020.108257
Callejo, 2015, Acid-sensing ion channels detect moderate acidifications to induce ocular pain, Pain, 156, 483, 10.1097/01.j.pain.0000460335.49525.17
McMonnies, 2021, Diagnosis and remediation of blink inefficiency, Contact Lens anterior eye: J. Br. Contact Lens Assoc., 44, 101331, 10.1016/j.clae.2020.04.015
Bannier-Helaouet, 2021, Exploring the human lacrimal gland using organoids and single-cell sequencing, Cell Stem Cell, 28, 1221, 10.1016/j.stem.2021.02.024
Dikmetas, 2021, The Association between Meibomian Gland Atrophy and Corneal Subbasal Nerve Loss in Patients with Chronic Ocular Graft-versus-host Disease, Curr. eye Res., 46, 796, 10.1080/02713683.2020.1846754
Lee, 2021, Corneal lymphangiogenesis in dry eye disease is regulated by substance P/neurokinin-1 receptor system through controlling expression of vascular endothelial growth factor receptor 3, Ocul. Surf., 22, 72, 10.1016/j.jtos.2021.07.003
Yu, 2020, Neurokinin-1 Receptor Antagonism Ameliorates Dry Eye Disease by Inhibiting Antigen-Presenting Cell Maturation and T Helper 17 Cell Activation, Am. J. Pathol., 190, 125, 10.1016/j.ajpath.2019.09.020
Yuan, 2022, Sensory nerves promote corneal inflammation resolution via CGRP mediated transformation of macrophages to the M2 phenotype through the PI3K/AKT signaling pathway, Int. Immunopharmacol., 102, 108426, 10.1016/j.intimp.2021.108426
Mikulec, 1996, CGRP increases the rate of corneal re-epithelialization in an in vitro whole mount preparation, J. Ocul. Pharm. Ther., 12, 417, 10.1089/jop.1996.12.417
Diel, 2021, Photophobia: shared pathophysiology underlying dry eye disease, migraine and traumatic brain injury leading to central neuroplasticity of the trigeminothalamic pathway, Br. J. Ophthalmol., 105, 751, 10.1136/bjophthalmol-2020-316417
Lin, 2021, Pseudomonas aeruginosa-induced nociceptor activation increases susceptibility to infection, PLoS Pathog., 17, e1009557, 10.1371/journal.ppat.1009557
Sacchetti, 2011, Tear levels of neuropeptides increase after specific allergen challenge in allergic conjunctivitis, Mol. Vis., 17, 47
Berger, 2012, Effects of VIP on corneal reconstitution and homeostasis following Pseudomonas aeruginosa induced keratitis, Investig. Ophthalmol. Vis. Sci., 53, 7432, 10.1167/iovs.12-9894
Jiang, 2012, Vasoactive intestinal peptide downregulates proinflammatory TLRs while upregulating anti-inflammatory TLRs in the infected cornea, J. Immunol., 189, 269, 10.4049/jimmunol.1200365
Zhang, 2020, Role of VIP and Sonic Hedgehog Signaling Pathways in Mediating Epithelial Wound Healing, Sensory Nerve Regeneration, and Their Defects in Diabetic Corneas, Diabetes, 69, 1549, 10.2337/db19-0870
Hwang, D. D., Lee, S. J., Kim, J. H. & Lee, S. M. The Role of Neuropeptides in Pathogenesis of Dry Dye. J. Clin. Med.10https://doi.org/10.3390/jcm10184248 (2021).
Geppetti, 2006, The transient receptor potential vanilloid 1: role in airway inflammation and disease, Eur. J. Pharmacol., 533, 207, 10.1016/j.ejphar.2005.12.063
Baral, 2018, Nociceptor sensory neurons suppress neutrophil and gammadelta T cell responses in bacterial lung infections and lethal pneumonia, Nat. Med., 24, 417, 10.1038/nm.4501
Guo, 2019, Increased expression of lung TRPV1/TRPA1 in a cough model of bleomycin-induced pulmonary fibrosis in Guinea pigs, BMC Pulm. Med, 19, 27, 10.1186/s12890-019-0792-z
Sadofsky, 2012, Inflammatory stimuli up-regulate transient receptor potential vanilloid-1 expression in human bronchial fibroblasts, Exp. Lung Res., 38, 75, 10.3109/01902148.2011.644027
Zhang, 2008, Altered expression of TRPV1 and sensitivity to capsaicin in pulmonary myelinated afferents following chronic airway inflammation in the rat, J. Physiol., 586, 5771, 10.1113/jphysiol.2008.161042
Jiao, 2021, Distribution of Corneal TRPV1 and Its Association With Immune Cells During Homeostasis and Injury, Investig. Ophthalmol. Vis. Sci., 62, 6, 10.1167/iovs.62.9.6
Wan, 2021, Nerve-associated transient receptor potential ion channels can contribute to intrinsic resistance to bacterial adhesion in vivo, FASEB J., 35, e21899, 10.1096/fj.202100874R
Trier, 2019, The Neuroimmune Axis in Skin Sensation, Inflammation, and Immunity, J. Immunol., 202, 2829, 10.4049/jimmunol.1801473
Cohen, 2019, Cutaneous TRPV1( + ) Neurons Trigger Protective Innate Type 17 Anticipatory Immunity, Cell, 178, 919, 10.1016/j.cell.2019.06.022
Zhang, 2021, Nonpeptidergic neurons suppress mast cells via glutamate to maintain skin homeostasis, Cell, 184, 2151, 10.1016/j.cell.2021.03.002
Wang, 2021, A basophil-neuronal axis promotes itch, Cell, 184, 422, 10.1016/j.cell.2020.12.033
Oetjen, 2017, Sensory Neurons Co-opt Classical Immune Signaling Pathways to Mediate Chronic Itch, Cell, 171, 217, 10.1016/j.cell.2017.08.006
Huang, 2018, Anatomical and functional dichotomy of ocular itch and pain, Nat. Med., 24, 1268, 10.1038/s41591-018-0083-x
You, 2021, Intestinal Mucosal Barrier Is Regulated by Intestinal Tract Neuro-Immune Interplay, Front. Pharmacol., 12, 659716, 10.3389/fphar.2021.659716
Matheis, 2020, Adrenergic Signaling in Muscularis Macrophages Limits Infection-Induced Neuronal Loss, Cell, 180, 64, 10.1016/j.cell.2019.12.002
Yu, 2014, Enteric glial cells and their role in the intestinal epithelial barrier, World J. gastroenterology: WJG, 20, 11273, 10.3748/wjg.v20.i32.11273
Deng, 2021, Identification of an intraocular microbiota, Cell Discov., 7, 13, 10.1038/s41421-021-00245-6
Lairson, 2003, Prevention of herpes simplex virus eye disease: a cost-effectiveness analysis, Arch. Ophthalmol., 121, 108, 10.1001/archopht.121.1.108
Farooq, 2012, Herpes simplex epithelial and stromal keratitis: an epidemiologic update, Surv. Ophthalmol., 57, 448, 10.1016/j.survophthal.2012.01.005
Grinde, B. Herpesviruses: latency and reactivation - viral strategies and host response. J. Oral Microbiol5https://doi.org/10.3402/jom.v5i0.22766 (2013).
Freeman, 2007, Psychological stress compromises CD8 + T cell control of latent herpes simplex virus type 1 infections, J. Immunol., 179, 322, 10.4049/jimmunol.179.1.322
Doll, 2020, Resolution of herpes simplex virus reactivation in vivo results in neuronal destruction, PLoS Pathog., 16, e1008296, 10.1371/journal.ppat.1008296
Doll, J. R., Thompson, R. L. & Sawtell, N. M. Infectious Herpes Simplex Virus in the Brain Stem Is Correlated with Reactivation in the Trigeminal Ganglia. J. Virol.93https://doi.org/10.1128/JVI.02209-18 (2019).
Yin, X. T. et al. CD28 Costimulation Is Required for Development of Herpetic Stromal Keratitis but Does Not Prevent Establishment of Latency. J. Virol.93https://doi.org/10.1128/JVI.00659-19 (2019).
Tajfirouz, 2017, CXCL9 compensates for the absence of CXCL10 during recurrent Herpetic stromal keratitis, Virology, 506, 7, 10.1016/j.virol.2017.02.022
Rogge, 2015, Therapeutic Use of Soluble Fas Ligand Ameliorates Acute and Recurrent Herpetic Stromal Keratitis in Mice, Investig. Ophthalmol. Vis. Sci., 56, 6377, 10.1167/iovs.15-16588
Donaghy, 2009, Role for plasmacytoid dendritic cells in the immune control of recurrent human herpes simplex virus infection, J. Virol., 83, 1952, 10.1128/JVI.01578-08
Moss, 2012, Peripheral blood CD4 T-cell and plasmacytoid dendritic cell (pDC) reactivity to herpes simplex virus 2 and pDC number do not correlate with the clinical or virologic severity of recurrent genital herpes, J. Virol., 86, 9952, 10.1128/JVI.00829-12
Li, 2006, Herpes simplex virus 1 infection induces the expression of proinflammatory cytokines, interferons and TLR7 in human corneal epithelial cells, Immunology, 117, 167, 10.1111/j.1365-2567.2005.02275.x
Liu, 1996, Inflammatory infiltration of the trigeminal ganglion after herpes simplex virus type 1 corneal infection, J. Virol., 70, 264, 10.1128/jvi.70.1.264-271.1996
St Leger, 2013, Broadening the repertoire of functional herpes simplex virus type 1-specific CD8 + T cells reduces viral reactivation from latency in sensory ganglia, J. Immunol., 191, 2258, 10.4049/jimmunol.1300585
Sheridan, 2009, Reevaluating the CD8 T-cell response to herpes simplex virus type 1: involvement of CD8 T cells reactive to subdominant epitopes, J. Virol., 83, 2237, 10.1128/JVI.01699-08
Knickelbein, 2008, Noncytotoxic lytic granule-mediated CD8 + T cell inhibition of HSV-1 reactivation from neuronal latency, Science, 322, 268, 10.1126/science.1164164
Himmelein, 2011, Circulating herpes simplex type 1 (HSV-1)-specific CD8 + T cells do not access HSV-1 latently infected trigeminal ganglia, Herpesviridae, 2, 10.1186/2042-4280-2-5
Gmyrek, G. B. et al. Herpes Simplex Virus 1 (HSV-1) 0DeltaNLS Live-Attenuated Vaccine Protects against Ocular HSV-1 Infection in the Absence of Neutralizing Antibody in HSV-1 gB T Cell Receptor-Specific Transgenic Mice. J. Virol.94https://doi.org/10.1128/JVI.01000-20 (2020).
Decman, 2005, Gamma interferon can block herpes simplex virus type 1 reactivation from latency, even in the presence of late gene expression, J. Virol., 79, 10339, 10.1128/JVI.79.16.10339-10347.2005
Frank, 2010, Early CD4( + ) T cell help prevents partial CD8( + ) T cell exhaustion and promotes maintenance of Herpes Simplex Virus 1 latency, J. Immunol., 184, 277, 10.4049/jimmunol.0902373
Lepisto, 2006, CD8 T cells mediate transient herpes stromal keratitis in CD4-deficient mice, Investig. Ophthalmol. Vis. Sci., 47, 3400, 10.1167/iovs.05-0898
Doymaz, 1992, Herpetic stromal keratitis: an immunopathologic disease mediated by CD4 + T lymphocytes, Investig. Ophthalmol. Vis. Sci., 33, 2165
Wuest, 2011, The herpes simplex virus-1 transactivator infected cell protein-4 drives VEGF-A dependent neovascularization, PLoS Pathog., 7, e1002278, 10.1371/journal.ppat.1002278
Yun, 2020, Production of the Cytokine VEGF-A by CD4( + ) T and Myeloid Cells Disrupts the Corneal Nerve Landscape and Promotes Herpes Stromal Keratitis, Immunity, 53, 1050, 10.1016/j.immuni.2020.10.013
Stepp, 2018, Reduced intraepithelial corneal nerve density and sensitivity accompany desiccating stress and aging in C57BL/6 mice, Exp. Eye Res., 169, 91, 10.1016/j.exer.2018.01.024
Chucair-Elliott, 2017, Colony Stimulating Factor-1 Receptor Expressing Cells Infiltrating the Cornea Control Corneal Nerve Degeneration in Response to HSV-1 Infection, Investig. Ophthalmol. Vis. Sci., 58, 4670, 10.1167/iovs.17-22159
Chucair-Elliott, 2016, IL-6 Contributes to Corneal Nerve Degeneration after Herpes Simplex Virus Type I Infection, Am. J. Pathol., 186, 2665, 10.1016/j.ajpath.2016.06.007
Royer, 2019, Complement and CD4( + ) T cells drive context-specific corneal sensory neuropathy, eLife, 8, e48378, 10.7554/eLife.48378
Paunicka, 2015, Severing corneal nerves in one eye induces sympathetic loss of immune privilege and promotes rejection of future corneal allografts placed in either eye, Am. J. Transplant.: Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg., 15, 1490, 10.1111/ajt.13240
Narayanan, 2006, Effect of hyperosmolality on beta-defensin gene expression by human corneal epithelial cells, Cornea, 25, 1063, 10.1097/01.ico.0000228785.84581.35
McDermott, 2009, The role of antimicrobial peptides at the ocular surface, Ophthalmic. Res., 41, 60, 10.1159/000187622
Garreis, 2010, Antimicrobial peptides as a major part of the innate immune defense at the ocular surface, Dev. Ophthalmol., 45, 16, 10.1159/000315016
Lu, 2020, Lactoferrin: A Critical Mediator of Both Host Immune Response and Antimicrobial Activity in Response to Streptococcal Infections, ACS Infect. Dis., 6, 1615, 10.1021/acsinfecdis.0c00050
Lai, 2022, Identified human breast milk compositions effectively inhibit SARS-CoV-2 and variants infection and replication, iScience, 25, 104136, 10.1016/j.isci.2022.104136
Dartt, 2011, Tear lipocalin: structure and function, Ocul. Surf., 9, 126, 10.1016/S1542-0124(11)70022-2
Fluckinger, 2004, Human tear lipocalin exhibits antimicrobial activity by scavenging microbial siderophores, Antimicrob. Agents Chemother., 48, 3367, 10.1128/AAC.48.9.3367-3372.2004
Deshpande, 2000, Dual role of B cells in mediating innate and acquired immunity to herpes simplex virus infections, Cell. Immunol., 202, 79, 10.1006/cimm.2000.1666
Deshpande, 2000, Pathogenesis of herpes simplex virus-induced ocular immunoinflammatory lesions in B-cell-deficient mice, J. Virol., 74, 3517, 10.1128/JVI.74.8.3517-3524.2000
Patel, C. D. et al. Trivalent Glycoprotein Subunit Vaccine Prevents Neonatal Herpes Simplex Virus Mortality and Morbidity. J. Virol.94https://doi.org/10.1128/JVI.02163-19 (2020).
Patel, C. D. et al. Maternal immunization confers protection against neonatal herpes simplex mortality and behavioral morbidity. Sci. Transl. Med.11https://doi.org/10.1126/scitranslmed.aau6039 (2019).
Kugadas, 2016, Impact of Microbiota on Resistance to Ocular Pseudomonas aeruginosa-Induced Keratitis, PLoS Pathog., 12, e1005855, 10.1371/journal.ppat.1005855
Kugadas, A. & Gadjeva, M. Impact of Microbiome on Ocular Health. Ocul. Surfhttps://doi.org/10.1016/j.jtos.2016.04.004 (2016).
Trujillo-Vargas, 2020, The gut-eye-lacrimal gland-microbiome axis in Sjogren Syndrome, Ocul. Surf., 18, 335, 10.1016/j.jtos.2019.10.006
Moon, 2020, Gut dysbiosis is prevailing in Sjogren's syndrome and is related to dry eye severity, PloS one, 15, e0229029, 10.1371/journal.pone.0229029
Wang, 2019, Dysbiosis Modulates Ocular Surface Inflammatory Response to Liposaccharide, Investig. Ophthalmol. Vis. Sci., 60, 4224, 10.1167/iovs.19-27939
Markle, 2013, Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity, Science, 339, 1084, 10.1126/science.1233521
Wen, 2008, Innate immunity and intestinal microbiota in the development of Type 1 diabetes, Nature, 455, 1109, 10.1038/nature07336
Hansen, 2016, Cutting Edge: Commensal Microbiota Has Disparate Effects on Manifestations of Polyglandular Autoimmune Inflammation, J. Immunol., 197, 701, 10.4049/jimmunol.1502465
Hansen, 2019, Targeting gut microbiota and barrier function with prebiotics to alleviate autoimmune manifestations in NOD mice, Diabetologia, 62, 1689, 10.1007/s00125-019-4910-5
Pflugfelder, 2017, The Pathophysiology of Dry Eye Disease: What We Know and Future Directions for Research, Ophthalmology, 124, S4, 10.1016/j.ophtha.2017.07.010
Baudouin, 2013, Role of hyperosmolarity in the pathogenesis and management of dry eye disease: proceedings of the OCEAN group meeting, Ocul. Surf., 11, 246, 10.1016/j.jtos.2013.07.003
Zhou, 2012, Critical involvement of macrophage infiltration in the development of Sjogren's syndrome-associated dry eye, Am. J. Pathol., 181, 753, 10.1016/j.ajpath.2012.05.014
Schaumburg, 2011, Ocular surface APCs are necessary for autoreactive T cell-mediated experimental autoimmune lacrimal keratoconjunctivitis, J. Immunol., 187, 3653, 10.4049/jimmunol.1101442
Bron, A. J. et al. TFOS DEWS II pathophysiology report. Ocul. Surfhttps://doi.org/10.1016/j.jtos.2017.05.011 (2017).
Li, 2004, Stimulation of matrix metalloproteinases by hyperosmolarity via a JNK pathway in human corneal epithelial cells, Investig. Ophthalmol. Vis. Sci., 45, 4302, 10.1167/iovs.04-0299
Julio, 2012, Effects of tear hyperosmolarity on conjunctival cells in mild to moderate dry eye, Ophthalmic Physiol. Opt., 32, 317, 10.1111/j.1475-1313.2012.00915.x
Luo, 2005, Hyperosmolar saline is a proinflammatory stress on the mouse ocular surface, Eye Contact Lens, 31, 186, 10.1097/01.ICL.0000162759.79740.46
Wang, 2021, Melatonin ameliorates oxidative stress-mediated injuries through induction of HO-1 and restores autophagic flux in dry eye, Exp. Eye Res, 205, 108491, 10.1016/j.exer.2021.108491
Katsiougiannis, 2015, Endoplasmic reticulum stress causes autophagy and apoptosis leading to cellular redistribution of the autoantigens Ro/Sjögren's syndrome-related antigen A (SSA) and La/SSB in salivary gland epithelial cells, Clin. Exp. Immunol., 181, 244, 10.1111/cei.12638
Tsubota, 1999, Conjunctival epithelium expression of HLA-DR in dry eye patients, Ophthalmologica, 213, 16, 10.1159/000027387
Chauhan, 2009, Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression, J. Immunol., 182, 1247, 10.4049/jimmunol.182.3.1247
Pelegrino, 2012, Low humidity environmental challenge causes barrier disruption and cornification of the mouse corneal epithelium via a c-jun N-terminal kinase 2 (JNK2) pathway, Exp. Eye Res., 94, 150, 10.1016/j.exer.2011.11.022
Zhang, 2014, Peripheral role of cathepsin S in Th1 cell-dependent transition of nerve injury-induced acute pain to a chronic pain state, J. Neurosci.: Off. J. Soc. Neurosci., 34, 3013, 10.1523/JNEUROSCI.3681-13.2014
de Paiva, 2009, IL-17 disrupts corneal barrier following desiccating stress, Mucosal. Immunol., 2, 243, 10.1038/mi.2009.5
Cha, 2004, A dual role for interferon-gamma in the pathogenesis of Sjogren's syndrome-like autoimmune exocrinopathy in the nonobese diabetic mouse, Scand. J. Immunol., 60, 552, 10.1111/j.0300-9475.2004.01508.x
Tsunawaki, 2002, Possible function of salivary gland epithelial cells as nonprofessional antigen-presenting cells in the development of Sjogren's syndrome, J. Rheumatol., 29, 1884
Meng, 2017, Interferon-gamma treatment in vitro elicits some of the changes in cathepsin S and antigen presentation characteristic of lacrimal glands and corneas from the NOD mouse model of Sjogren's Syndrome, PloS one, 12, e0184781, 10.1371/journal.pone.0184781
Heuberger, 2021, Why do intestinal epithelial cells express MHC class II, Immunology, 162, 357, 10.1111/imm.13270
Royer, 2018, Corneal Epithelial Cells Exhibit Myeloid Characteristics and Present Antigen via MHC Class II, Investigative Ophthalmol. Vis. Sci., 59, 1512, 10.1167/iovs.17-23279
Epstein, 2013, HLA-DR expression as a biomarker of inflammation for multicenter clinical trials of ocular surface disease, Exp. Eye Res., 111, 95, 10.1016/j.exer.2013.03.018
Versura, 2011, Hyperosmolar stress upregulates HLA-DR expression in human conjunctival epithelium in dry eye patients and in vitro models, Investig. Ophthalmol. Vis. Sci., 52, 5488, 10.1167/iovs.11-7215
Rolando, 2005, Distribution of Conjunctival HLA-DR Expression and the Pathogenesis of Damage in Early Dry Eyes, Cornea, 24, 951, 10.1097/01.ico.0000157421.93522.00
Jirsova, 2020, Aberrant HLA-DR expression in the conjunctival epithelium after autologous serum treatment in patients with graft-versus-host disease or Sjögren's syndrome, PloS one, 15, e0231473, 10.1371/journal.pone.0231473
Pisella, 2000, Flow cytometric analysis of conjunctival epithelium in ocular rosacea and keratoconjunctivitis sicca, Ophthalmology, 107, 1841, 10.1016/S0161-6420(00)00347-X
Okuma, 2013, Enhanced apoptosis by disruption of the STAT3-IkappaB-zeta signaling pathway in epithelial cells induces Sjogren's syndrome-like autoimmune disease, Immunity, 38, 450, 10.1016/j.immuni.2012.11.016
Niederkorn, 2006, Desiccating Stress Induces T Cell-Mediated Sjogren's Syndrome-Like Lacrimal Keratoconjunctivitis, J. Immunol., 176, 3950, 10.4049/jimmunol.176.7.3950
de Paiva, 2006, Corticosteroid and doxycycline suppress MMP-9 and inflammatory cytokine expression, MAPK activation in the corneal epithelium in experimental dry eye, Exp. Eye Res., 83, 526, 10.1016/j.exer.2006.02.004
Luo, 2004, Experimental dry eye stimulates production of inflammatory cytokines and MMP-9 and activates MAPK signaling pathways on the ocular surface, Investig. Ophthalmol. Vis. Sci., 45, 4293, 10.1167/iovs.03-1145
de Paiva, 2009, Essential role for c-Jun N-terminal kinase 2 in corneal epithelial response to desiccating stress, Arch. Ophthalmol., 127, 1625, 10.1001/archophthalmol.2009.316
Redfern, 2013, Toll-like receptor expression and activation in mice with experimental dry eye, Investig. Ophthalmol. Vis. Sci., 54, 1554, 10.1167/iovs.12-10739
Chi, W. et al. Mitochondrial DNA oxidation induces imbalanced activity of NLRP3/NLRP6 inflammasomes by activation of caspase-8 and BRCC36 in dry eye. J. Autoimmun.80, 65–76 (2017).
Reins, 2018, MyD88 Deficiency Protects Against Dry Eye-Induced Damage, Investig. Ophthalmol. Vis. Sci., 59, 2967, 10.1167/iovs.17-23397
Li, 2019, Expression and Role of Nucleotide-Binding Oligomerization Domain 2 (NOD2) in the Ocular Surface of Murine Dry Eye, Investig. Ophthalmol. Vis. Sci., 60, 2641, 10.1167/iovs.19-27144
Kiripolsky, 2017, Myd88 is required for disease development in a primary Sjogren's syndrome mouse model, J. Leukoc. Biol., 102, 1411, 10.1189/jlb.3A0717-311R
Alam, 2020, Immune - Goblet cell interaction in the conjunctiva, Ocul. Surf., 18, 326, 10.1016/j.jtos.2019.12.006
Chen, Y. et al. IFN-gamma-Expressing Th17 Cells Are Required for Development of Severe Ocular Surface Autoimmunity. J. Immunol.https://doi.org/10.4049/jimmunol.1602144 (2017).
Foulsham, 2018, Severe dry eye disease in aged mice is associated with an expanded memory Th17 cell response and higher frequencies of IFN-γ-expressing Th17 Cells, Investigative Ophthalmol. Vis. Sci., 59, 3286
You, 2015, Macrophage Phenotype in the Ocular Surface of Experimental Murine Dry Eye Disease, Archivum Immunol. et. therapiae experimentalis, 63, 299, 10.1007/s00005-015-0335-0
Alam, J., de Paiva, C. S. & Pflugfelder, S. C. Desiccation Induced Conjunctival Monocyte Recruitment and Activation - Implications for Keratoconjunctivitis. Front. Immunol.12https://doi.org/10.3389/fimmu.2021.701415 (2021).
de Paiva, 2021, Differentially expressed gene pathways in the conjunctiva of Sjogren Syndrome Keratoconjunctivitis Sicca, Front. Immunol., 12, 702755, 10.3389/fimmu.2021.702755
Gao, 2004, ICAM-1 expression predisposes ocular tissues to immune-based inflammation in dry eye patients and Sjogrens syndrome-like MRL/lpr mice, Exp. Eye Res., 78, 823, 10.1016/j.exer.2003.10.024
Roescher, 2011, Effect of soluble ICAM-1 on a Sjögren's syndrome-like phenotype in NOD mice is disease stage dependent, PloS one, 6, e19962, 10.1371/journal.pone.0019962
Emamian, 2009, Peripheral blood gene expression profiling in Sjögren's syndrome, Genes Immun., 10, 285, 10.1038/gene.2009.20
Peck, 2012, Transcriptome analysis of the interferon-signature defining the autoimmune process of Sjogren's syndrome, Scand. J. Immunol., 76, 237, 10.1111/j.1365-3083.2012.02749.x
Hall, 2012, Precise probes of type II interferon activity define the origin of interferon signatures in target tissues in rheumatic diseases, Proc. Natl Acad. Sci. USA, 109, 17609, 10.1073/pnas.1209724109
Mavragani, 2010, Activation of the type I interferon pathway in primary Sjogren's syndrome, J. Autoimmun., 35, 225, 10.1016/j.jaut.2010.06.012
Oyelakin, 2020, Transcriptomic and Network Analysis of Minor Salivary Glands of Patients With Primary Sjögren's Syndrome, Front. Immunol., 11, 606268, 10.3389/fimmu.2020.606268
Guzmán, M. et al. Transient tear hyperosmolarity disrupts the neuroimmune homeostasis of the ocular surface and facilitates dry eye onset. Immunologyhttps://doi.org/10.1111/imm.13243 (2020).
Gestermann, 2010, STAT4 is a confirmed genetic risk factor for Sjögren's syndrome and could be involved in type 1 interferon pathway signaling, Genes Immun., 11, 432, 10.1038/gene.2010.29
Aydemir, 2019, The evaluation of the Myxovirus Resistance 1 protein in serum and saliva to monitor disease activation in primary Sjögren's syndrome, Clin. (Sao Paulo), 74, e631, 10.6061/clinics/2019/e631
Schraml, 2009, The AP-1 transcription factor Batf controls T(H)17 differentiation, Nature, 460, 405, 10.1038/nature08114
Perez, 2016, Lifitegrast, a Novel Integrin Antagonist for Treatment of Dry Eye Disease, Ocul. Surf., 14, 207, 10.1016/j.jtos.2016.01.001
Coursey, 2018, Once-Daily Cyclosporine-A-MiDROPS for Treatment of Dry Eye Disease, Transl. Vis. Sci. Technol., 7, 24, 10.1167/tvst.7.5.24
de Paiva, 2019, Topical cyclosporine A therapy for dry eye syndrome, Cochrane database Syst. Rev., 9, Cd010051
Chighizola, C. B., Ong, V. H. & Meroni, P. L. The Use of Cyclosporine A in Rheumatology: a 2016 Comprehensive Review. Clin. Rev. Allerg. Immunol.https://doi.org/10.1007/s12016-016-8582-3 (2016).