Tiến tới hiểu cơ chế sinh lý bị thay đổi do kích thích hạt giống bằng các tác nhân halo khác nhau dưới stress muối

Alivia Paul1,2, Subhankar Mondal3,4, Koushik Chakraborty3, Asok K. Biswas1
1Plant Physiology and Biochemistry Laboratory, Department of Botany, CAS, University of Calcutta, Kolkata, India
2Cell Biology Laboratory, Department of Botany, CAS, University of Calcutta, Kolkata, India
3Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, India
4Department of Botany, Utkal University, Bhubaneswar, India

Tóm tắt

Độ mặn của đất cản trở sự sống sót và năng suất của cây trồng. Để giảm thiểu thiệt hại liên quan đến muối trong cây, các biện pháp quản lý muối tốt hơn trong nông nghiệp đã trở thành điều kiện cần thiết. Kích thích hạt giống bằng các tác nhân halo khác nhau là một kỹ thuật, giúp cải thiện khả năng chịu đựng của cây đã được kích thích trong việc đối phó với natri. Sự chịu mặn đạt được ở các cây có khả năng chịu gia tăng thông qua các cơ chế sinh lý cơ bản - loại ion và khả năng chịu đựng của mô, và các cây chịu mặn có thể (tích lũy Na+) hoặc không (loại bỏ Na+) cho phép sự chuyển động của natri đến lá. Trong khi Na+ loại bỏ phụ thuộc vào việc loại trừ ion ở rễ, Na+ tích lũy là những quản lý Na+ thành thạo có thể phân vùng Na+ trong lá và sử dụng chúng một cách có lợi như một chất thẩm thấu rẻ tiền. Các cây nhạy cảm với muối là Na+ tích lũy, nhưng khả năng chịu đựng mô bẩm sinh và quá trình loại trừ ion của chúng không đủ để chịu đựng. Kích thích hạt giống với các tác nhân halo khác nhau hỗ trợ trong việc 'tái định hình' cơ chế chịu mặn của cây. Việc đặt lại cơ chế chịu mặn không phổ quát cho mọi tác nhân halo và có thể thay đổi với các tác nhân halo. Ở đây, chúng tôi xem xét các cơ chế sinh lý mà các tác nhân halo khác nhau nhắm đến để cung cấp khả năng chịu mặn được cải thiện ở các cây đã được kích thích. Các tác nhân halo cụ thể cho canxi và kali kích hoạt việc loại trừ Na+ ở rễ, do đó đảm bảo lượng Na+ thấp trong lá. Ngược lại, các tác nhân kích thích cụ thể cho Na+ ủng hộ các quá trình dành cho sự tiếp nhận Na+ trong lá, cải thiện khả năng chịu đựng của mô cây hoặc sự bao bọc trong không bào, và cung cấp lợi ích lớn nhất cho các cây nhạy cảm với muối và tích lũy natri. Tổng quan, bài đánh giá này sẽ giúp hiểu cơ chế tiềm ẩn phía sau bản chất bẩm sinh của cây đối với việc quản lý muối và sự cải thiện của nó với các tác nhân halo khác nhau, giúp tối ưu hóa hiệu suất chịu stress của cây trồng. Việc hiểu phản ứng bẩm sinh của cây đối với ion- Na+ và chọn lựa các tác nhân kích thích, cả hai đều bổ sung cho việc tối ưu hóa hiệu suất cây trồng dưới stress.

Từ khóa


Tài liệu tham khảo

Abdolahpour M, Lofti R (2014) Seed priming affected physiology and grain yield. J Bio Env Sci 5(1):442–446 Afzal I, Rauf S, Basra SMA, Murtaza G (2008) Halopriming improves vigor, metabolism of reserves and ionic contents in wheat seedlings under salt stress. Plant Soil Environ 54(9):382–388 Afzal I, Butt A, Ur Rehman H, Ahmad Basra AB, Afzal A (2012) Alleviation of salt stress in fine aromatic rice by seed priming. Aus J Crop Sci 6(10):1401–1407 Afzal I, Basra SMA, Cheema MA, Farooq M, Jafar MZ, Shahid M, Yasmeen A (2013) Seed priming: a shotgun approach for alleviation of salt stress in wheat. Int J Agric Biol 15(6):1199–1203 Agarie S, Shimoda T, Shimizu Y, Baumann K, Sunagawa H, Kondo A, Ueno O, Nakahara T, Nose A, Cushman JC (2007) Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J Exp Bot 58(8):1957–1967 Ali A, Hyder SI, Arshadullah M, Bhatti SU (2012) Potasssium chloride as a nutrient seed primer toenhance salt-tolerance in maize. Pesquisa Agropecuária Brasileira 47:1181-1184 Alnayef M, Solis C, Shabala L, Ogura T, Chen Z, Bose J, Maathuis FJM, Venkataraman G, Tanoi K, Yu M, Zhu M, Horie T, Shabala S (2020) Changes in expression level of OsHKT1; 5 alters activity of membrane transporters involved in K+ and Ca2+ acquisition and homeostasis in salinized rice roots. Int J Mol Sci 21(14):4882 Alzahrani O, Abouseadaa H, Abdelmoneim TK, Alshehri MA, Elmogy MM, El-Beltagi HS, Atia MAM (2021) Agronomical, physiological and molecular evaluation reveals superior salt-tolerance in bread wheat through salt-induced priming approach. Not Bot Horti Agrobo 49(2):12310 Amtmann A, Sanders D (1998) Mechanisms of Na+ uptake by plant cells. In: advances in botanical research. Acad Press 29:75–112 Anil VS, Krishnamurthy P, Kuruvilla S, Sucharitha K, Thomas G, Mathew MK (2005) Regulation of the uptake and distribution of Na+ in shoots of rice (Oryza sativa) variety Pokkali: role of Ca2+ in salt tolerance response. Physiol Plant 124(4):451–464 Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiporter in Arabidopsis. Science 285:1256–1258 Ashraf M, Rauf H (2001) Inducing salt tolerance in maize (Zea mays L.) through seed priming with chloride salts: growth and ion transport at early growth stages. Acta Physiol Plant 23:407–414 Bakht J, Shafi M, Jamal Y, Sher H (2011) Response of maize (Zea mays L.) to seed priming with NaCl and salinity stress. Span J Agric Res 9(1):252–261 Bal AR, Dutt SK (1986) Mechanism of salt tolerance in wild rice (Oryza Coarctata Roxb). Plant Soil 92:399–404 Basra SMA, Afzal I, Anwar S, Anwar-ul-Haq M, Shafiq M, Majeed K (2006) Alleviation of salinity stress by seed invigoration techniques in wheat (Triticum aestivum). Seed Technol 36–46 Ben Youssef R, Jelali N, Boukari N, Albacete A, Martinez C, Alfocea FP, Abdelly C (2021) The efficiency of different priming agents for improving germination and early seedling growth of local Tunisian barley under salinity stress. Plants 10(11):2264 Biswas S, Paul A, Biswas AK (2018) Seed priming: a multifaceted and cost-effective technique to improve crop production. Kong Res J 5(1):64–68 Biswas S, Ghosh A, Paul A, Biswas AK (2019) Isolation, purification and partial characterization of low molecular weight peptides from nonprimed and haloprimed seedlings of Vigna mungo L. and Cajanus cajan L. and their impact on physiological aspects under NaCl exposure. J Exp Biol Agric 7(1):12–24 Biswas S, Paul A, Biswas AK (2020) Potential of seed halopriming in mitigating NaCl induced adversities on nitrogen metabolism in legume crops. Leg Res 45:73–81 Bose J, Munns R, Shabala S, Gilliham M, Pogson B, Tyerman SD (2017) Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. J Exp Bot 68(12):3129–3143 Cano EA, Bolarin MC, Perez-Alfocea F, Caro M (1991) Effect of NaCl priming on increased salt tolerance in tomato. J Hortic Sci 66(5):621–628 Cayuela E, Pérez-Alfocea F, Caro M, Bolarin MC (1996) Priming of seeds with NaCl induces physiological changes in tomato plants grown under salt stress. Physiol Plant 96(2):231–236 Cayuela E, Estañ MT, Parra M, Caro M, Bolarin MC (2001) NaCl pre-treatment at the seedling stage enhances fruit yield of tomato plants irrigated with salt water. Plant Soil 230:231–238 Chakraborty K, Bhaduri D, Meena HN, Kalariya K (2016) External potassium (K+) application improves salinity tolerance by promoting Na+-exclusion, K+-accumulation and osmotic adjustment in contrasting peanut cultivars. Plant Physiol Biochem 103:143–153 Chakraborty K, Mondal S, Ray S, Samal P, Pradhan B, Chattopadhyay K, Kar MK, Swain P, Sarkar RK (2020) Tissue tolerance coupled with ionic discrimination can potentially minimize the energy cost of salinity tolerance in rice. Front Plant Sci 11:265 Chakraborty K, Mondal S, Bhaduri D, Mohanty A, Paul A (2022) Interplay between sodium and chloride decides the plant’s fate under salt and drought stress conditions. In plant nutrition and food security in the era of climate change. Acad Press 271–314 Cheeseman JM (2015) The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions. New Phytol 206(2):557–570 Chen M, Chen Q, Niu X, Zhang R, Lin H, Xu C et al (2007a) Expression of OsNHX1 gene in maize confers salt tolerance and promotes plant growth in the field. Plant Soil Environ 53(11):490 Chen H, An R, Tang JH, Cui XH, Hao FS, Chen J, Wang XC (2007b) Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice. Mol Breed 19:215–225 Chen GH, Yan W, Yang LF, Gai JY, Zhu YL (2014) Overexpression of StNHX1, a novel vacuolar Na+/H+ antiporter gene from Solanum torvum, enhances salt tolerance in transgenic vegetable soybean. Hortic Environ Biotechnol 55:213–221 Chen X, Ma C, Yang Y, Wang H, Huang Y, Zhang X, Huang K, Zhao Z, Zhang S (2017) Overexpression of Suaeda salsa SsNHX1 gene enhanced salt and drought tolerance of transgenic tobacco. Chin J Eco Agric 25(10):1518–1526 Chen X, Zhang R, Li B, Cui T, Liu C, Chen B, Zhou Y (2022) Alleviation of oxidative damage induced by CaCl2 priming is related to osmotic and ionic stress rather than enhanced antioxidant capacity during germination under salt stress in sorghum. Front Plant Sci 13:881039 Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19(6):371–379 Demrİkaya M (2014) Improvement in tolerance to salt stress during tomato cultivation. Turk J Biol 38:193–199 Doranie-Uliaie E, Ghareyazi B, Farsi M, Kogel KH (2012) Improved salt tolerance in canola (Brassica napus) plants by overexpression of Arabidopsis Na+/H+ antiporter gene (AtNHX1). J Plant Mol Breed 1(1):34–42 Dua R, Sharma S, Singh S (2000) Genetic options in managing salinity-alkalinity for pulse production. In Advances in Management of Biotic and Abiotic Stresses in Crop Plants: Proceedings of National Symposium on Management of Biotic and Abiotic Stresses in Pulse Crops, 26–28, 1998, Kanpur (pp. 43–48). Indian Society of Pulses Research and Development FAO, Global Soil Prtnership (2023) https://www.fao.org/global-soil-partnership/areas-of-work/soil-salinity/en/ Farhoudi R, Sharifzadeh F, Poustini K, Makkizadeh MT, Kochak Por M (2007) The effects of NaCl priming on salt tolerance in canola (Brassica napus) seedlings grown under saline conditions. Seed Sci Technol 35(3):754–759 Farooq M, Wahid A, Ahmad N, Asad SA (2010) Comparative efcacy of surface drying and re-drying seed priming in rice: changes in emergence, seedling growth and associated metabolic 680 Plant Cell Reports (2023) 42:657–688 1 3 events. Paddy Water Environ 8:15–22 Farooq M, Usman M, Nadeem F, Rehman H, Wahid A, Basra SMA, Siddique KHM (2019) Seed priming in feld crops: potential benefts, adoption and challenges. Crop Pasture Sci 70:731771 Flowers TJ, Munns R, Colmer TD (2015) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115(3):419–431 Fukuda A, Nakamura A, Tagiri A, Tanaka A, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45(2):146–159 Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y, Shimamura M, Ohnishi J, Shingo H, Gowik U, Westoff P, Bräutigam A, Weber APM, Izui K (2011) A plastidial sodium-dependent pyruvate transporter. Nature 476(7361):472–475 Guan B, Hu Y, Zeng Y, Wang Y, Zhang F (2011) Molecular characterization and functional analysis of a vacuolar Na+/H+ antiporter gene (HcNHX1) from Halostachys Caspica. Mol Biol Rep 38:1889–1899 Guo J, Du M, Lu C, Wang B (2020a) NaCl improves reproduction by enhancing starch accumulation in the ovules of the euhalophyte Suaeda salsa. BMC Plant Biol 20(1):1–16 Guo J, Dong X, Li Y, Wang B (2020b) NaCl treatment markedly enhanced pollen viability and pollen preservation time of euhalophyte Suaeda salsa via up regulation of pollen development-related genes. J Plant Res 133:57–71 Guo Q, Tian XX, Mao PC, Meng L (2020c) Overexpression of Iris lactea tonoplast Na+/H+ antiporter gene IlNHX confers improved salt tolerance in tobacco. Biol Plant 64(1) Hajibagheri MA, Flowers TJ (1985) Salt tolerance in the halophyte Suaeda maritime (L.) Dum. The influence of the salinity of the culture solution on leaf starch and phosphate content. Plant Cell Environ 8(4):261–267 Hidayah A, Nisak RR, Susanto FA, Nuringtyas TR, Yamaguchi N, Purwestri YA (2022) Seed halopriming improves salinity tolerance of some rice cultivars during seedling stage. Bot Stud 63(1):24 Honggiao L, Suyama A, Mitani-Ueno N, Hell R, Maruyama-Nakashita A (2021) A low level of NaCl stimulates plant growth by improving carbon and sulphur assimilation in. Arabidopsis thaliana Plants 10(10):2138 Huang Y, Zhang X-X, Li Y-H, Ding J-Z, Du H-M, Zhao Z, Zhou L-N, Liu C, Gao S-B, Cao M, Lu Y-L, Zhang S-Z (2018) Overexpression of Suaeda salsa SsNHX1 gene confers enhanced salt and drought tolerance to transgenic Zea mays. J Integr Agric 17(12):2612–2623 Iqbal M, Ashraf M (2007) Seed preconditioning modulates growth, ionic relations, and photosynthetic capacity in adult plants of hexaploid wheat under salt stress. J Plant Nutr 30(3):381–396 Islam F, Yasmeen T, Ali S, Ali B, Farooq MA, Gill RA (2015) Priming-induced antioxidative responses in two wheat cultivars under saline stress. Acta Physiol Plant 37:1–12 Jagadeeson V, Kumari K, Pulipati S, Parida A, Venkataraman G (2019) Expression of wild rice Porteresia coarctata PcNHX1 antiporter gene (PcNHX1) in tobacco controlled by PcNHX1 promoter (PcNHX1p) confers Na+-specific hypocotyl elongation and stem-specific Na+ accumulation in transgenic tobacco. Plant Physiol Biochem 139:161–170 James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1; 4 and HKT1; 5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62(8):2939–2947 Jisha KC, Puthur JT (2014) Halopriming of seeds imparts tolerance to NaCl and PEG induced stress in Vigna radiata (L.) Wilczek varieties. Physiol Mol Biol Plants 20:303–312 Khan HA, Siddique KH, Munir R, Colmer TD (2015) Salt sensitivity in chickpea: growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes. J Plant Physiol 182:1–12 Kiani-Pouya A, Rasouli F, Rabbi B, Falakboland Z, Yong M, Chen ZH, Zhou M, Shabala S (2020) Stomatal traits as a determinant of superior salinity tolerance in wild barley. J Plant Physiol 245:153108 Kotula L, Clode PL, Jimenez JDLC, Colmer TD (2019) Salinity tolerance in chickpea is associated with the ability to ‘exclude’Na from leaf mesophyll cells. J Exp Bot 70(18):4991–5002 Krishnamurthy P, Ranathunge K, Franke R, Prakash HS, Schreiber L, Mathew MK (2009) The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L). Planta 230:119–134 Krishnamurthy P, Ranathunge K, Nayak S, Schreiber L, Mathew MK (2011) Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L). J Exp Bot 62(12):4215–4228 Krishnamurthy P, Vishal B, Khoo K, Rajappa S, Loh CS, Kumar PP (2019) Expression of AoNHX1 increases salt tolerance of rice and Arabidopsis, and bHLH transcription factors regulate AtNHX1 and AtNHX6 in Arabidopsis. Plant Cell Rep 38:1299–1315 Kronzucker HJ, Coskun D, Schulze LM, Wong JR, Britto DT (2013) Sodium as nutrient and toxicant. Plant Soil 369:1–23 Kubala S, Wojtyla L, Quinet M, Lechowska K, Lutts S, Garnczarska M (2015) Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmoprimig improvement of Brassica napus germination under salinity stress Lacan D, Durand M (1996) Na+-K+ exchange at the xylem/symplast boundary. Its significance in the salt sensitivity of soybean. Plant Physiol 110:705–711 Lämke J, Bäurle I (2017) Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol 18(1):124 Li HT, Liu H, Gao XS, Zhang H (2009a) Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress. Biochem Biophys Res Commun 382:637–641 Li W, Zhang Q, Kong X, Wu C, Ma X, Zhang H, Zhao Y (2009b) Salt tolerance is conferred in Arabidopsis by overexpression of the vacuolar Na(+)/H(+) antiporter gene SsNHX2, an alternative splicing variant of SsNHX1, from Suaeda salsa. J Plant Biol 52:147–153 Li Y, Zhang Y, Feng F, Liang D, Cheng L, Ma F, Shi S (2010) Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple root stock M. 26 and its influence on salt tolerance. Plant Cell Tissue Organ Cult 102:337–345 Li M, Lin X, Li H, Pan X, Wu G (2011a) Overexpression of AtNHX5 improves tolerance to both salt and water stress in rice (Oryza sativa L). Plant Cell Tissue Organ Cult 107:283–293 Li M, Li Y, Li H, Wu G (2011b) Overexpression of AtNHX5 improves tolerance to both salt and drought stress in Broussonetia papyrifera (L.) Vent. Tree Physiol 31(3):349–357 Li W, Wang D, Jin T, Chang Q, Yin D, Xu S et al (2011c) The vacuolar Na+/H+ antiporter gene SsNHX1 from the halophyte Salsola soda confers salt tolerance in transgenic alfalfa (Medicago sativa L). Plant Mol Biol Rep 29:278–290 Li Q, Liu R, Li Z, Fan H, Song J (2022) Positive effects of NaCl on the photoreaction and carbon assimilation efficiency in Suaeda salsa. Plant Physiol Biochem 177:32–37 Liu J, Zhang S, Dong L, Chu J (2014) Incorporation of Na+/H+ antiporter gene from Aeluropus littoralis confers salt tolerance in soybean (Glycine max L). Indian J Biochem Biophys 21(1):58–65 Liu X, Quan W, Bartels D (2022) Stress memory responses and seed priming correlate with drought tolerance in plants: an overview. Planta 255(2):45 Louis N, Dhankher OP, Puthur JT (2023) Seed priming can enhance and retain stress tolerance in ensuing generations by inducing epigenetic changes and trans-generational memory. Physiol Plant 175(2):e13881 Lu W, Guo C, Li X, Duan W, Ma C, Zhao M et al (2014) Overexpression of TaNHX3, a vacuolar Na+/H+ antiporter gene in wheat, enhances salt stress tolerance salt tolerance in tobacco by improving related physiological processes. Plant Physiol Biochem 76:17–28 Lutts S, Benincasa P, Wojtyla L, Kubala SS, Pace R, Lechowska K, Quinet M, Garnczarska (2016) Seed priming: New comprehensive approaches for an old empirical technique. Book: New challenges in seed Biology. Basic and Translational Research Driving Seed Technology InTech Open Maathuis FJ (2014) Sodium in plants: perception, signalling, and regulation of sodium fluxes. J Exp Bot 65(3):849–858 Mamedi A, Sharifzadeh F, Maali-Amiri R, Divargar F, Rasoulnia A (2022) Seed osmopriming with Ca2+ and K+ improves salt tolerance in quinoa seeds and seedlings by amplifying antioxidant defense and ameliorating the osmotic adjustment process. Physiol Mol Biol Plants 28(1):251–274 Manonmani V, Ameer Junaithal Begum, Jayanthi M (2014) Halo Priming of seeds. Res J Seed Sci 7(1):1–13 Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143(2):1001–1012 Matsushita N, Matoh T (1991) Characterization of Na+ exclusion mechanisms of salt-tolerant reed plants in comparison with salt-sensitive rice plants. Physiol Plant 83(1):170–176 Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42(6):565–572 Mohanty A, Chakraborty K, Mondal S, Jena P, Panda RK, Samal KC, Chattopadhyay K (2023) Relative contribution of ion exclusion and tissue tolerance traits govern the differential response of rice towards salt stress at seedling and reproductive stages. Environ Exp Bot 206:105131 Mondal S, Chakraborty K (2020) Brassicaceae plants response and tolerance to salinity. In: Hasanuzzaman M (ed) The Plant Family Brassicaceae. Springer, Singapore Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681 Munns R, James RA, Gilliham M, Flowers TJ, Colmer TD (2016) Tissue tolerance: an essential but elusive trait for salt-tolerant crops. Funct Plant Biol 43(12):1103–1113 Naz F, Gul H, Hamayun M, Sayyed A, Khan H, Sherwani S (2014) Effect of NaCl stress on Pisum sativum germination and seedling growth with the influence of seed priming with potassium (KCl and KOH). Am-Eurasian J Agric Environ Sci 14(11):1304–1311 Nelson DE, Koukoumanos M, Bohnert HJ (1999) Myo-inositol-dependent sodium uptake in rice plant. Plant Physiol 119(1):165–172 Obroucheva NV, Sinkevich IA, Lityagina SV, Novikova TGV (2017) Water relations in germinative seeds. Russ J Plant Physiol 64:625–633 Ohta M, Hayashi Y, Nakashima A, Harmada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532(3):279–282 Olίas R, Eljakaoui Z, Li J, De Morales PA, Marίn-Manzano MC, Pardo JM, Belver A (2009) The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell Environ 32(7):904–916 Pagano A, Macovei A, Balestrazzi A (2023) Molecular dynamics of seed priming at the crossroads between basic and applied research. Plant Cell Rep 42:657–688 Paparella S, Araujo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34:1281–1293 Pardo JM, Quintero FJ (2002) Plants and sodium ions: keeping company with the enemy. Genome Biol 3(6):1–4 Patade VY, Bhargava S, Suprasanna P (2012) Halopriming mediated salt and iso-osmotic PEG stress tolerance and, gene expression profiling in sugarcane (Saccharum officinarum L). Mol Biol Rep 39:9563–9572 Paul A, Biswas S, Banerjee R, Mukherjee A, Biswas A (2021) Halopriming imparts salt tolerance by reducing oxidative, osmotic stress and DNA damage in five different legume varieties. Leg Res. https://doi.org/10.18805/LR-4723 Paul A, Mondal S, Pal A, Biswas S, Chakraborty K, Mazumder A, Biswas AK, Kundu R (2023) Seed priming with NaCl helps to improve tissue tolerance, potassium retention ability of plants, and protects the photosynthetic ability in two different legumes, chickpea and lentil, under salt stress. Planta 257(6):111 Prusty MR, Kim SR, Vinarao R, Entila F, Egdane J, Diaz MG, Jena KK (2018) Newly identified wild rice accessions conferring high salt tolerance might use a tissue tolerance mechanism in leaf. Front Plant Sci 9:417 Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Resour Forum 38(4):282–295 Rajagopal D, Agarwal P, Tyagi W, Singla-Pareek SL, Reddy MK, Sopory SK (2007) Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Mol Breed 19:137–151 Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32(3):237–249 Rawat N, Wungrampha S, Singla-Pareek SL, Min Yu, Shabala S, Pareek A (2022) Rewilding staple crops for the lost halophytism: toward sustainability and profitability of agricultural production systems. Mol Plant 15(1):45–64 Reddy INBL, Kim BK, Yoon IS, Kim KH, Kwon TR (2017) Salt tolerance in rice: focus on mechanisms and approaches. Rice Sci 24(3):123–144 Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37(10):1141–1146 Rodrίguez-Rosales MP, Gálvez FJ, Huertas R, Aranda MN, Baghour M, Cagnac O, Venema K (2009) Plant NHX cation/proton antiporters. Plant Signal Behav 4(4):265–276 Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124 Saddiq MS, Iqbal S, Afzal I, Ibrahim AM, Bakhtavar MA, Hafeez MB, Maqbool MM (2019) Mitigation of salinity stress in wheat (Triticum aestivum L.) seedlings through physiological seed enhancements. J Plant Nutr 42(10):1192–1204 Savvides A, Shawkat A, Mark T, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses: Mission possible? Trends Plant Sci 21:329–340 Shabala S, Pottosin II (2010) Potassium and potassium-permeable channels in plant salt tolerance. Ion channels and plant stress responses 87–110 Shabala S, Chen G, Chen H, Pottosin I (2020) The energy cost of the tonoplast futile sodium leak. New Phytol 225(3):1105–1110 Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings Natl Acad Sci 97(12):6896–6901 Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na(+)/H(+) antiporter SOS1 controls long-distance Na(+) transport in plants. Plant Cell 14(2):465–477 Singh J, Singh V, Sharma PC (2018) Elucidating the role of osmotic, ionic and major salt responsive transcript components towards salinity tolerance in contrasting chickpea (Cicer arietinum L.) genotypes. Physiol Mol Biol Plants 24:441–453 Sivritepe N, Sivritepe HO, Eris A (2003) The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Sci Hortic 97(3–4):229–237 Sivritepe HÖ, Sivritepe N, Eriş A, Turhan E (2005) The effects of NaCl pre-treatments on salt tolerance of melons grown under long-term salinity. Sci Hortic 106(4):568–581 Soeda Y, Konings MCJM, Vorst O, van Houwelingen AMML, Stoopen GM, Maliepaard CA, Kodde J, Bino RJ, Groot SPC, van der Geest AHMAHM (2005) Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level. Plant Physiol 137:354–368 Solis CA, Yong MT, Zhou M et al (2022) Evolutionary significance of NHX family and NHX1 in salinity stress adaptation in the genus Oryza. Int J Mol Sci 23(4):2092 Subbarao GV, Ito O, Berry WL, Wheeler RM (2003) Sodium—a functional plant nutrient. Crit Rev Plant Sci 22(5):391–416 Sun Y, Kong X, Li C, Liu Y, Ding Z (2015) Potassium retention under salt stress is associated with natural variation in salinity tolerance among Arabidopsis accessions. PLoS ONE 10:e0124032 Teng XX, Cao WL, Lan HX, Tang HJ, Bao YM, Zhang HS (2017) OsNHX2, Na+/H+ antiporter gene, can enhance salt tolerance in rice plants through more effective accumulation of toxic Na+ in leaf mesophyll and bundle sheath cells. Acta Physiol Plant 39:1–8 Theerakulpisut P, Kanawapee N, Panwong B (2016) Seed priming alleviated salt stress effects on rice seedlings by improving Na+/K+ and maintaining membrane integrity. Int J Plant Biol 7(1):6402 Tian N, Wang J, Xu ZQ (2011) Overexpression of Na+/H+ antiporter gene AtNHX1 from Arabidopsis thaliana improves the salt tolerance of Kiwi fruit (Actinidia deliciosa). S Afr J Bot 77(1):160–169 Turan S, Tripathy BC (2015) Salt-stress induced modulation of chlorophyll biosynthesis during de‐etiolation of rice seedlings. Physiol Plant 153(3):477–491 Vadez V, Krishnamurthy L, Serraj R, Gaur PM, Upadhyaya HD, Hoisington DA, Varshney RK, Turner NC, Siddique KHM (2007) Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crops Res 104(1–3):123–129 Vaktabhai CK, Kumar S, Kumar CS (2017) Seedling invigouration by halo priming in tomato against salt stress. J Pharmacog Phytochem 6(6):716–722 Verma D, Singla-Pareek SL, Rajagopal D, Reddy MK, Sopory SK (2007) Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J Biosci 32(3):621–628 Wang B, Zhai H, He S, Zhang H, Ren Z, Zhang DA (2016) Vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato. Sci Hortic 201:153–166 Wang H, Ding Q, Wang H (2018) A new Na+/H+ antiporter gene KvNHX1 isolated from the halophyte Kosteletzkya virginica improves salt tolerance in transgenic tobacco. Biotechnol Biotechnol Equip 32(6):1378–1386 Wei Q, Guo YJ, Cao HM, Kuai BK (2011) Cloning and characterization of an AtNHX2-like Na+/H+ antiporter gene from Ammopiptanthus mongolicus (Leguminosae) and its ectopic expression enhanced drought and salt tolerance in Arabidopsis thaliana. Plant Cell Tissue Organ Cult 105:309–316 Wu C, Gao X, Kong X, Zhao Y et al (2009) Molecular cloning and functional analysis of a Na+/H+ antiporter gene ThNHX1 from a halophytic plant Thellungiella Halophila. Plant Mol Biol Rep 27:1–12 Xu K, Homg P, Luo L, Xia T (2009) Overexpression of AtNHX1, a vacuolar Na+/H+ antiporter from Arabidopsis thaliana, in Petunia hybrid enhances salt and drought tolerance. J Plant Biol 52:453–461 Yadav R, Flowers TJ, Yeo AR (1996) The involvement of the transpirational bypass flow in sodium uptake by high-and low‐sodium‐transporting lines of rice developed through intravarietal selection. Plant Cell Environ 19(3):329–336 Yu Y, Assmann SM (2016) The effect of NaCl on stomatal opening in Arabidopsis wild type and agb1 heterotrimeric G-protein mutant plants. Plant Signal Behav 11(2):e1085275 Zahra N, Al Hinai MS, Hafeez MB, Rehman A, Wahid A, Siddique KH, Farooq M (2022) Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiol Biochem 178:55–69 Zhang GH, Su Q, An LJ, Wu S (2008) Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiol Biochem 46(2):117–126 Zhang YM, Zhang HM, Liu ZH, Li HC, Guo XL, Li GL (2015) The wheat NHX antiporter gene TaNHX2 confers salt tolerance in transgenic alfalfa by increasing the retention capacity of intracellular potassium. Plant Mol Biol 87(3):317–327 Zhang H, Zhao Y, Zhu J (2020) Thriving under stress: how plants balance growth and the stress response. Dev Cell 55(5):529–543 Zheng Y, Jia A, Ning T, Xu J, Li Z, Jiang G (2008) Potassium nitrate application alleviates sodiumchloride stress in winter wheat cultivars differing in salt tolerance. J Plant Physiol 165(14):1455-1465