Movement similarity assessment using symbolic representation of trajectories
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alt H., 2009, Efficient algorithms. Vol. 5760 of Lecture Notes in Computer Science, 5760, 235
Anagnostopoulos, A. Global distance-based segmentation of trajectories. Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining. New York. pp.34–43. ACM.
Bozkaya, T., Yazdani, N. and Özsoyolu, M. Proceedings of the sixth international conference on Information and knowledge management - CIKM ′97. New York. Matching and indexing sequences of different lengths, pp.128–135. ACM Press.
Buchin, K. Finding long and similar parts of trajectories. Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems – GIS ′09. New York. pp.296–305. ACM Press.
Buchin, M. An algorithmic framework for segmenting trajectories based on spatio-temporal criteria. Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems – GIS ′10. New York. pp.202–211. ACM.
Chen, L. Özsu, M.T. and Oria, V. Symbolic representation and retrieval of moving object trajectories. MIR ′04: Proceedings of the 6th ACM SIGMM international workshop on Multimedia information retrieval. New York. pp.227–234. ACM.
Chen, L. Özsu, M.T. and Oria, V. Robust and fast similarity search for moving object trajectories. SIGMOD ′05: Proceedings of the 2005 ACM SIGMOD international conference on Management of data. New York. pp.491–502. ACM.
Ding, H., Trajcevski, G. and Scheuermann, P. Efficient similarity join of large sets of moving object trajectories. 15th international symposium on temporal representation and reasoning. Washington, DC. pp.79–87. IEEE.
Dodge S., 2009, Computers, Environment and Urban Systems, 33, 419, 10.1016/j.compenvurbsys.2009.07.008
Doherty S., 2001, Transportation Research E-Circular, C, 26, 449
Du Mouza, C., Rigaux, P. and Scholl, M. On-line aggregation and filtering of pattern-based queries. Scientific and statistical database management, 2006. 18th international conference onIEEE. Washington, DC. pp.333–342. IEEE.
Elsner J., 1999, Hurricanes of the North Atlantic: climate and society, 10.1093/oso/9780195125085.001.0001
Etienne, L., Devogele, T. and Bouju, A. Spatio-temporal trajectory analysis of mobile objects following the same itinerary. Proceedings of the international symposium on spatial data handling (SDH). Hong Kong.
Faloutsos, C. A signature technique for similarity-based queries. Proceedings. Compression and complexity of SEQUENCES 1997 (Cat. No.97TB100171). Washington, DC. pp.2–20. IEEE Computer Society.
Frentzos, E., Gratsias, K. and Theodoridis, Y. Index-based Most Similar Trajectory Search. ICDE 2007. IEEE 23rd international conference on data engineering. Washington, DC. pp.816–825. IEEE.
Kisilevich, S. Spatio-Temporal Clustering : a Survey. Italy: Springer.
Laube P., 2007, Computers, Environment and Urban Systems, 31, 481, 10.1016/j.compenvurbsys.2007.08.002
Levenshtein V., 1966, Soviet Physics-Doklady, 10, 707
Lin, B. and Su, J. Shapes based trajectory queries for moving objects. GIS ′05: Proceedings of the 13th annual ACM international workshop on Geographic information systems. New York. pp.21–30. ACM.
Little, J.J. and Gu, Z. Video retrieval by spatial and temporal structure of trajectories. Proceedings of SPIE, the International Society for Optical Engineering. Bellingham, WA. pp.545–552. SPIE.
Pelekis, N. Similarity search in trajectory databases. TIME′07: proceedings of the 14th international symposium on temporal representation and reasoning. Washington, DC. pp.129–140. IEEE Computer Society.
Trajcevski, G. Dynamics-aware similarity of moving objects trajectories. GIS ′07: proceedings of the 15th annual ACM international symposium on Advances in geographic information systems. New York. pp.1–8. ACM.
van Kreveld, M. and Luo, J. 2The definition and computation of trajectory and subtrajectory similarity. GIS ′07: proceedings of the 15th annual ACM international symposium on Advances in geographic information systems. New York. pp.1–4. ACM.
Vlachos, M., Gunopulos, D. and Kollios, G. Discovering similar multidimensional trajectories. ICDE ′02: Proceedings 18th International Conference on Data Engineering. Washington, DC. pp.673–684. IEEE Computer Societ.
Vlachos, M., Gunopulos, D. and Das, G. Rotation invariant distance measures for trajectories. KDD ′04: Proceedings of the 2004 ACM SIGKDD international conference on knowledge discovery and data mining. New York, New York, USA. pp.707–712. ACM Press.
Vlachos, M., Gunopulos, D. and Kollios, G. Robust similarity measures for mobile object trajectories. DEXA′02: proceedings of the 13th international workshop on database and expert systems applications. Los Alamitos. pp.721–728. IEEE Computer Society.
Yan, Z. A hybrid model and computing platform for spatio-semantic trajectories. The semantic web: research and applications. pp.60–75. Berlin: Springer.
Yanagisawa, Y., Akahani, J.i. and Satoh, T. Shape-Based Similarity Query for Trajectory of Mobile Objects. MDM ′03: proceedings of the 4th international conference on mobile data management. London. pp.63–77. Springer-Verlag.