Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects

Wiley - Tập 79 Số 3 - Trang 187-210 - 2007
M. J. Harris1, D. M. Juriloff1
1Dept. of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.

Tóm tắt

AbstractBACKGROUND: The number of mouse mutants and strains with neural tube closure defects (NTDs) now exceeds 190, including 155 involving known genes, 33 with unidentified genes, and eight “multifactorial” strains. METHODS: The emerging patterns of mouse NTDs are considered in relation to the unknown genetics of the common human NTDs, anencephaly, and spina bifida aperta. RESULTS: Of the 150 mouse mutants that survive past midgestation, 20% have risk of either exencephaly and spina bifida aperta or both, parallel to the majority of human NTDs, whereas 70% have only exencephaly, 5% have only spina bifida, and 5% have craniorachischisis. The primary defect in most mouse NTDs is failure of neural fold elevation. Most null mutations (>90%) produce syndromes of multiple affected structures with high penetrance in homozygotes, whereas the “multifactorial” strains and several null‐mutant heterozygotes and mutants with partial gene function (hypomorphs) have low‐penetrance nonsyndromic NTDs, like the majority of human NTDs. The normal functions of the mutated genes are diverse, with clusters in pathways of actin function, apoptosis, and chromatin methylation and structure. The female excess observed in human anencephaly is found in all mouse exencephaly mutants for which gender has been studied. Maternal agents, including folate, methionine, inositol, or alternative commercial diets, have specific preventative effects in eight mutants and strains. CONCLUSIONS: If the human homologs of the mouse NTD mutants contribute to risk of common human NTDs, it seems likely to be in multifactorial combinations of hypomorphs and low‐penetrance heterozygotes, as exemplified by mouse digenic mutants and the oligogenic SELH/Bc strain. Birth Defects Research (Part A), 2007. © 2006 Wiley‐Liss, Inc.

Từ khóa


Tài liệu tham khảo

10.1128/MCB.25.20.8948-8959.2005

10.1101/gad.855001

10.1242/dev.00357

10.1038/sj.emboj.7601273

10.1002/(SICI)1097-0177(199704)208:4<536::AID-AJA9>3.0.CO;2-J

10.1038/15537

10.1016/S0960-9822(95)00183-7

10.1016/S0925-4773(99)00220-8

10.1016/j.modgep.2006.03.011

10.1002/jez.1401270206

10.1038/ng768

10.1093/hmg/ddi048

10.1093/hmg/11.3.283

10.1101/gad.12.8.1202

10.1073/pnas.2134310100

10.1101/gad.11.16.2029

10.1016/S0925-4773(03)00039-X

Best RG, 2006, Anencephaly genetic and environmental links (ANGEL) study‐development of a research resource, Birth Defects Res A Clin Mol Teratol, 76, 150

10.1016/0165-3806(96)00097-1

10.1002/gene.20071

10.1016/S0925-4773(99)00205-1

10.1186/jbiol10

10.1093/oxfordjournals.aje.a010290

10.1002/ajmg.c.30048

10.1136/jmg.31.5.383

10.1242/dev.127.22.4891

10.1242/dev.01122

10.1016/S1097-2765(00)00127-1

10.1073/pnas.0401025101

10.1093/hmg/9.13.1937

10.1016/S0012-1606(03)00323-3

10.1093/oxfordjournals.bmb.a070671

Carter CO, 1974, Clues to the aetiology of neural tube malformations, Dev Med Child Neurol Suppl, 32, 3, 10.1111/j.1469-8749.1974.tb03442.x

10.1073/pnas.0501963102

10.1093/hmg/8.12.2199

10.1093/hmg/9.3.413

10.1007/BF02984794

10.1016/S0092-8674(00)81732-8

10.1242/dev.126.8.1631

10.1073/pnas.93.13.6275

10.1002/aja.1001990203

10.1093/hmg/10.5.433

10.1101/gad.9.6.686

10.1073/pnas.1934713100

10.1073/pnas.0500026102

10.1093/humrep/17.9.2451

10.1038/ng770

10.1073/pnas.97.24.13384

10.1242/dev.02021

10.1111/j.1469-7580.2005.00476.x

10.1016/S0166-2236(03)00212-1

10.1038/nrg1181

10.1016/0925-4773(92)90074-T

10.1007/s00335-001-2121-z

10.1016/S0960-9822(03)00374-9

10.1136/jmg.21.6.413

10.1056/NEJM199212243272602

10.1093/emboj/19.24.6675

10.1242/dev.126.17.3957

10.1006/dbio.1997.8553

10.1242/dev.126.17.3831

10.1016/j.ntt.2004.12.007

10.1038/ng1415

10.1002/dvdy.20004

10.1093/hmg/6.5.727

10.1128/MCB.19.10.7237

10.1002/ajmg.c.30052

10.1002/ajmg.a.30766

10.1136/jmg.28.9.605

10.1016/S0925-4773(98)00011-2

10.1016/j.febslet.2004.12.090

10.1016/0092-8674(93)90627-3

10.1038/35084089

10.1016/j.ydbio.2003.09.005

Enkhmandakh B, 2006, The TFII‐I family of nuclear regulators is required for neural tube morphogenesis, Birth Defects Res A Clin Mol Teratol, 76, 165

Epstein DJ, 2000, Members of the bHLH‐PAS family regulate shh transcription in forebrain regions of the mouse CNS, Development, 127, 4701, 10.1242/dev.127.21.4701

10.1002/tera.1420450214

10.1002/tera.1420420209

10.1111/j.1469-1809.1965.tb00500.x

10.1073/pnas.92.5.1774

10.1126/science.8096088

Finnell RH, 2006, Characterization of a hypomorphic allele of the FKBP8 gene, Birth Defects Res A Clin Mol Teratol, 176, 146

10.1126/science.280.5372.2107

10.1093/hmg/9.4.575

10.1016/S0896-6273(00)80989-7

Fraser FC, 1970, The genetics of cleft lip and palate, Am J Hum Genet, 22, 336

10.1242/dev.126.20.4643

10.1073/pnas.0501071102

10.1126/science.277.5329.1109

10.1002/j.1460-2075.1991.tb08054.x

10.1038/ng0296-191

10.1101/gad.10.3.313

10.1038/nm0197-60

10.1016/S0925-4773(98)00029-X

10.1073/pnas.0409558102

Gunther T, 1994, Open brain, a new mouse mutant with severe neural tube defects, shows altered gene expression patterns in the developing spinal cord, Development, 120, 3119, 10.1242/dev.120.11.3119

10.1016/j.ydbio.2004.11.010

10.1128/MCB.24.5.2074-2082.2004

10.1016/S0092-8674(00)81477-4

Hall JG, 1988, Clinical, genetic, and epidemiological factors in neural tube defects, Am J Hum Genet, 43, 827

10.1242/dev.00164

10.1016/j.cell.2005.03.016

10.1002/(SICI)1096-9926(199704)55:4<231::AID-TERA3>3.0.CO;2-3

Harris MJ, 2006, The maternal diet component of the multifactorial NTD risk in SELH/Bc mice, Birth Defects Res A Clin Mol Teratol, 76, 145

10.1002/(SICI)1096-9926(199911)60:5<292::AID-TERA10>3.0.CO;2-6

10.1002/bdra.20170

10.1242/dev.129.8.1983

10.1093/emboj/18.5.1172

10.1038/ng812

10.1016/S0092-8674(00)81537-8

10.1038/13802

10.1002/aja.1001460205

10.1038/35041577

10.1002/tera.1420510102

10.1073/pnas.171283198

10.1523/JNEUROSCI.3356-04.2004

10.1007/s00335-005-0045-8

10.1074/jbc.M111412200

10.1073/pnas.0505328102

10.1038/nature02061

10.1038/ng0393-241

10.1002/jez.1401370303

10.1002/ajmg.1320190108

10.1242/dev.124.22.4627

10.1093/hmg/10.12.1325

10.1016/0092-8674(93)90641-3

10.1016/j.ydbio.2004.02.017

10.1101/gad.9.24.3136

10.1242/dev.02072

10.1006/geno.1998.5277

10.1128/MCB.26.7.2758-2771.2006

10.1101/gad.12.2.149

10.1038/ng1549

10.1017/S0016672300002962

10.1002/tera.1064

10.1093/hmg/9.6.993

10.1007/s003350010284

10.1002/bdra.20302

Juriloff DM, 2006, Congenic lines from SELH/Bc mice provide proof of principle of the genetic and developmental multifactorial threshold model for NTDs, Birth Defects Res A Clin Mol Teratol, 76, 148

10.1002/ajmg.c.30050

10.1073/pnas.95.13.7485

10.1002/ajmg.1320250320

10.1038/90081

10.1093/hmg/ddg233

10.1038/nature01865

10.1128/MCB.21.22.7787-7795.2001

10.1016/S0925-4773(96)00549-7

10.1093/hmg/9.11.1615

Kobayashi T, 1999, Renal carcinogenesis, hepatic hemangiomatosis, and embryonic lethality caused by a germ‐line Tsc2 mutation in mice, Cancer Res, 59, 1206

10.1007/BF00389463

10.1002/tera.10037

10.1242/dev.01405

10.1016/S0896-6273(00)80646-7

10.1006/dbio.1997.8758

10.1016/S0896-6273(00)80727-8

10.1016/S0092-8674(00)81204-0

Labosky PA, 1997, The winged helix gene, Mf3, is required for normal development of the diencephalon and midbrain, postnatal growth and the milk‐ejection reflex, Development, 124, 1263, 10.1242/dev.124.7.1263

10.1006/dbio.1999.9327

10.1242/dev.01877

10.1016/S0896-6273(00)81092-2

10.1016/0925-4773(96)00589-8

10.1016/j.ydbio.2005.06.010

10.1016/j.mcn.2004.04.010

10.1016/j.gde.2005.04.002

10.1006/geno.1995.9946

10.1126/science.1087621

Li Q, 2000, Complete lack of NF‐kappaB activity in IKK1 and IKK2 double‐deficient mice: Additional defect in neurulation, Genes Dev, 14, 1729, 10.1101/gad.14.14.1729

10.1242/dev.01842

Lippman‐Hand A, 1978, Indications for prenatal diagnosis in relatives of patients with neural tube defects, Obstet Gynecol, 51, 72

10.1126/science.1102513

10.1002/(SICI)1520-6408(1997)20:2<119::AID-DVG5>3.0.CO;2-A

10.1242/dev.120.10.2723

10.1523/JNEUROSCI.20-19-07384.2000

10.1093/hmg/10.21.2385

10.1038/nature02677

10.1128/MCB.25.11.4625-4637.2005

10.1016/j.mcn.2004.12.002

10.1017/S0016672300034194

10.1002/aja.1002010407

10.1016/S0896-6273(00)80988-5

10.2174/1381612013397726

10.1016/j.ydbio.2005.12.003

10.1101/gad.9.10.1237

10.1016/S0925-4773(97)00192-5

10.1002/tera.1420410204

10.1002/ajmg.1320030409

10.1101/gad.12.10.1438

10.1002/jez.1402530205

10.1006/dbio.1997.8787

10.1523/JNEUROSCI.1057-04.2004

MGI, 2006, Mouse Genome Informatics

10.1128/MCB.22.15.5527-5538.2002

10.1242/dev.126.20.4431

10.1083/jcb.143.6.1713

10.1128/MCB.25.24.11113-11121.2005

10.1002/tera.1420400109

10.1002/(SICI)1096-8628(19971212)73:2<113::AID-AJMG2>3.0.CO;2-V

10.1016/0140-6736(91)90133-A

10.1093/hmg/10.22.2593

10.1093/hmg/ddg014

10.1006/geno.2001.6638

10.1016/0092-8674(93)90642-4

10.1073/pnas.97.4.1618

10.1006/dbio.1996.8449

Nait‐Oumesmar B, 2002, Ectopic expression of Gcm1 induces congenital spinal cord abnormalities, Development, 129, 3957, 10.1242/dev.129.16.3957

10.1038/ng0494-357

10.1523/JNEUROSCI.4610-03.2004

10.1038/7788

10.1016/S0092-8674(00)81705-5

10.1128/MCB.23.3.916-922.2003

Nozaki M, 1999, Developmental abnormalities of glycosylphosphatidylinositol‐anchor‐deficient embryos revealed by Cre/loxP system, Lab Invest, 79, 293

10.1016/S0165-3806(97)81790-7

Oka C, 1995, Disruption of the mouse RBP‐J kappa gene results in early embryonic death, Development, 121, 3291, 10.1242/dev.121.10.3291

10.1016/S0092-8674(00)81656-6

10.1242/dev.01268

10.2337/diab.40.10.1245

10.1016/0376-8716(94)90143-0

10.1002/tera.1420390312

10.1002/(SICI)1097-0177(199705)209:1<105::AID-AJA10>3.0.CO;2-0

10.1038/13861

10.1038/35035124

10.1128/MCB.25.16.7193-7202.2005

10.1242/dev.129.9.2293

10.1016/0925-4773(92)90053-M

10.1073/pnas.95.15.8686

10.1242/dev.02473

10.1136/jmg.2005.031658

10.1242/dev.01389

10.1006/dbio.1994.1023

10.1006/excr.2000.4818

10.1073/pnas.052124799

10.1007/BF00356174

10.1038/78124

10.1038/ng1644

10.1016/S0092-8674(01)00189-1

10.1016/S0925-4773(99)00213-0

10.1038/ng0695-175

10.1002/dvdy.10203

10.1242/dev.02457

10.1242/dev.124.13.2659

10.1242/dev.124.7.1313

10.1073/pnas.0401733101

10.1073/pnas.96.7.3790

10.1242/dev.113.3.857

10.1038/381235a0

10.1002/ajmg.1320260325

10.1002/ajmg.1320580406

10.1074/jbc.M111408200

10.1101/gad.1360605

10.1038/35146

10.1016/j.ydbio.2003.09.036

10.1128/MCB.20.15.5631-5642.2000

10.1073/pnas.0402760101

Solloway MJ, 1999, Early embryonic lethality in Bmp5;Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup, Development, 126, 1753, 10.1242/dev.126.8.1753

10.1006/dbio.2002.0699

10.1023/B:NERE.0000023597.37698.13

10.1002/dvdy.20107

10.1002/bdra.20272

10.1016/j.ydbio.2006.03.051

10.1073/pnas.92.4.944

10.1128/MCB.24.14.6445-6455.2004

10.1242/jcs.03070

10.1128/MCB.21.4.1058-1065.2001

10.1002/1097-0177(2000)9999:9999<::AID-DVDY1030>3.0.CO;2-S

10.1242/dev.125.1.21

10.1038/ng1292

10.1101/gad.9.10.1211

10.1002/ar.1091250107

10.1002/aja.1002040304

10.1073/pnas.0505404102

10.1038/nm961

10.1002/ajmg.1320150409

10.1242/dev.122.11.3381

10.1074/jbc.274.43.30843

10.1523/JNEUROSCI.4480-05.2006

10.1128/MCB.24.5.2063-2073.2004

10.3181/00379727-200-43458

UCSC Genome Browser.2006. Mouse August 2005 Freeze.http://genome.ucsc.edu/

10.1016/j.devbrainres.2003.07.002

10.1128/MCB.02419-05

10.1007/s004290100169

10.1093/oxfordjournals.jhered.a109505

10.1016/j.cell.2004.10.024

Vogelweid CM, 1993, New Zealand White mice: An experimental model of exencephaly, Lab Anim Sci, 43, 58

WalderRY YangB AndrewsMP et al.2005. Targeted deletion of the Trpm6 gene in mouse results in embryonic lethality. Presented at: Ann Meeting Am Soc Hum Genet 2005; Salt Lake City UT. Available from:http://www.ashg.org/genetics/ashg2005s. Abstract 2171.

10.1523/JNEUROSCI.4698-05.2005

10.1523/JNEUROSCI.22-19-08563.2002

10.1084/jem.20051108

10.1073/pnas.92.5.1585

10.1093/hmg/ddi190

10.1002/tera.1420450110

10.1016/j.taap.2005.09.008

10.1073/pnas.93.5.2110

10.1136/jmg.12.3.280

10.1242/dev.125.2.327

10.1006/dbio.1999.9227

10.1038/90108

10.1016/0012-1606(92)90157-C

10.1016/S0092-8674(00)81165-4

10.1242/dev.129.10.2507

10.1126/science.1062074

10.1101/gad.850000

10.1016/S0092-8674(00)81733-X

10.1016/S0092-8674(00)80324-4

10.1038/381238a0

10.1038/labinvest.3700430

10.1038/ng0796-275

10.1073/pnas.97.12.6844

10.1016/S0960-9822(01)00149-X

10.1002/bdra.20164

10.1016/j.cell.2006.03.048

10.1242/dev.00908