Motion on lie groups and its applications in control theory

Reports on Mathematical Physics - Tập 51 - Trang 159-170 - 2003
JoséF. Cariñena1
1Departamento de Física Teórica, Facultad de Ciencias, Universidad de Zaragoza, 50009 , Spain

Tài liệu tham khảo

Brockett, 1982, Control Theory and Singular Riemannian Geometry Carifiena, 2000 Carifiena, 2001, Rep. Math. Phys., 48, 47, 10.1016/S0034-4877(01)80063-X Carifiena, 2001, Acta Appl. Math., 66, 67, 10.1023/A:1010743114995 Carifiena, 1998, Int. J. Mod. Phys. A, 13, 3601, 10.1142/S0217751X98001694 Cariñena, 2000, J. Opt. B: Quantum Semiclass. Opt., 2, 94, 10.1088/1464-4266/2/2/305 Cariñena, 1999, Int. J. Mod. Phys. A, 14, 1935, 10.1142/S0217751X9900097X Cariñena, 2002, Acta Appl. Math., 70, 43, 10.1023/A:1013913930134 Cariñena, 2002, Lie Systems in Control Theory, 287 J. F. Cariña and A. Ramos: Lie Systems in Control Theory in: Classical and Quantum Integrability, Banach Center Publication at press. Chow, 1940, Math. Ann., 117, 98, 10.1007/BF01450011 Lafferriere, 1991, Motion Planning for Controllable Systems Without Drift Lafferriere, 1993, A Differential Geometric Approach to Motion Planning Murray, 1993, Control of Nonholonomic Systems Using Chained Form Murray, 1991, Steering Nonholonomic Systems in Chained Form Murray, 1993, IEEE T. Automat. Contr, 38, 700, 10.1109/9.277235 Wei, 1963, J. Math. Phys., 4, 575, 10.1063/1.1703993 Wei, 1964, 15, 327 Yang, 1996, Optimal Control of a Rigid Body with Two Oscillators, 7