Motion on lie groups and its applications in control theory
Tài liệu tham khảo
Brockett, 1982, Control Theory and Singular Riemannian Geometry
Carifiena, 2000
Carifiena, 2001, Rep. Math. Phys., 48, 47, 10.1016/S0034-4877(01)80063-X
Carifiena, 2001, Acta Appl. Math., 66, 67, 10.1023/A:1010743114995
Carifiena, 1998, Int. J. Mod. Phys. A, 13, 3601, 10.1142/S0217751X98001694
Cariñena, 2000, J. Opt. B: Quantum Semiclass. Opt., 2, 94, 10.1088/1464-4266/2/2/305
Cariñena, 1999, Int. J. Mod. Phys. A, 14, 1935, 10.1142/S0217751X9900097X
Cariñena, 2002, Acta Appl. Math., 70, 43, 10.1023/A:1013913930134
Cariñena, 2002, Lie Systems in Control Theory, 287
J. F. Cariña and A. Ramos: Lie Systems in Control Theory in: Classical and Quantum Integrability, Banach Center Publication at press.
Chow, 1940, Math. Ann., 117, 98, 10.1007/BF01450011
Lafferriere, 1991, Motion Planning for Controllable Systems Without Drift
Lafferriere, 1993, A Differential Geometric Approach to Motion Planning
Murray, 1993, Control of Nonholonomic Systems Using Chained Form
Murray, 1991, Steering Nonholonomic Systems in Chained Form
Murray, 1993, IEEE T. Automat. Contr, 38, 700, 10.1109/9.277235
Wei, 1963, J. Math. Phys., 4, 575, 10.1063/1.1703993
Wei, 1964, 15, 327
Yang, 1996, Optimal Control of a Rigid Body with Two Oscillators, 7