Motion misperception caused by feedback connections: A neural model simulating the Fröhlich effect

Psychological Research - Tập 71 - Trang 709-715 - 2006
Elena Carbone1, Marc Pomplun2
1Department of Psychology, Bielefeld University, Bielefeld, Germany
2Department of Computer Science, University of Massachusetts at Boston, Boston, USA

Tóm tắt

When asked to indicate the starting position of a fast moving stimulus, observers do not indicate the actual starting position but a later position on the motion trajectory. This perceptual illusion is known as the “Fröhlich effect”. We present a neural model aimed at simulating this phenomenon based on feedforward and feedback connections. The basic simulation mechanisms seem to be compatible with the attentional and the motion extrapolation account. A comparison between simulated and empirical results showed that the model is capable of generating the same main effects as those found in the empirical data.

Tài liệu tham khảo

Baldo, M. V. C., & Caticha, N. (2004). Compuational neurobiology of visual illusions: The flash-lag and Fröhlich effects emerge from simple neural networks. Perception, 33, S32. Baldo, M. V. C., Kihara, A. H., Namba, J., & Klein, S. A. (2002). Evidence for an attentional component of the perceptual misalignment between moving and flashing stimuli. Perception, 31, 17–30. Carbone, E. (2001). Die Rolle von Aufmerksamkeitsprozessen bei der Fehlwahrnehmung dynamischer Reize [The role of attentional processes in the misperception of dynamic stimuli]. Unpublished dissertation, Bielefeld University, Germany. Di Lollo, V., Enns, J. T., & Rensink, R. A. (2000). Competition for consciousness among visual events: The psychophysics of reentrant visual processes. Journal of Experimental Psychology: General, 129, 481–507. Driver, J., & Spence, C. (2000). Multisensory perception: Beyond modularity and convergence. Current Biology, 10, 731–735. Fröhlich, F. W. (1921). Untersuchungen über periodische Nachbilder [Studies on periodic afterimages]. Zeitschrift für Sinnesphysiologie, 52, 60–88. Fröhlich, F. W. (1929). Die Empfindungszeit [The sensation time]. Jena: Fischer. Lamme, V. A. F., & Roelfsema, P. R. (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23, 571–579. Luck, S. J. (1998). Neurophysiology of selective attention. In H. Pashler (Ed.), Attention (pp. 257–295). Hove: Psychology Press. Martinez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., Dubowitz, D. J. et al. (1999). Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience, 2, 364–369. Mateeff, S., & Hohnsbein, J. (1988). Perceptual latencies are shorter for motion towards the fovea than for motion away. Vision Research, 28, 711–719. Mateeff, S., Yakimoff, N., Hohnsbein, J., Ehrenstein, W. H., Bohdanecky, Z., & Radil, T. (1991). Selective directional sensitivity in visual motion perception. Vision Research, 31, 131–138. Müsseler, J., & Aschersleben, G. (1998). Localizing the first position of a moving stimulus: The Fröhlich effect and an attention-shifting explanation. Perception & Psychophysics, 60, 683–695. Müsseler, J., & Neumann, O. (1992). Apparent distance reduction with moving stimuli (Tandem Effect): Evidence for an attention-shifting model. Psychological Research, 54, 246–266. Müsseler, J., Stork, S., & Kerzel, D. (2002). Comparing mislocalizations with moving stimuli: The Fröhlich effect, the flash-lag effect and representational momentum. Visual Cognition, 9, 120–138. Neumann, O. (1982). Experimente zum Fehrer-Raab-Effekt und das ‘Wetterwart’-Modell der visuellen Maskierung [Experiments on the Fehrer-Raab effect and the ‘Weather-Station’ model of visual masking]. Report No. 24/1982, Department of Psychology at the Ruhr-University Bochum, Cognitive Psychology Unit. Neumann, O., & Müsseler, J. (1990). Visuelles Fokussieren: Das Wetterwart-Modell und einige seiner Anwendungen [Visual focussing: The Weather-Station model and some of its applications]. In C. Meinecke & L. Kehrer (Eds.), Bielefelder Beiträge zur Kognitionspsychologie (pp.77–108). Göttingen: Hogrefe. Nijhawan, R. (1994). Motion extrapolation in catching. Nature, 370, 256–257. Nijhawan, R. (1997). Visual decomposition of colour through motion extrapolation. Nature, 386, 66–69. Nijhawan, R. (2002). Neural delays, visual motion and the flash-lag effect. Trends in Cognitive Sciences, 6, 387–393. Pascual-Leone, A., & Walsh, V. (2001). Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science, 292, 510–512. Purushothaman, G., Patel, S. S., Bedell, H. E., & Ogmen, H. (1998). Moving ahead through differential visual latency. Nature, 396, 424. Rosa, M. G. P., Casagrande, V. A., Preuss, T., & Kaas, J. H. (1997). Visual field representation in striate and prestriate cortices of a prosimian Primate (galago garnetti). Journal of Neurophysiology, 77, 3193–3217. Scharlau, I., & Neumann, O. (2003). Perceptual latency priming by masked and unmasked stimuli: Evidence for an attentional explanation. Psychological Research, 67, 184–197. Skapura, D. M. (1996). Building neural networks. New York: Association for Computing Machinery (ACM) Press.