Motion and twisting of magnetic particles ingested by alveolar macrophages in the human lung: effect of smoking and disease

BioMagnetic Research and Technology - Tập 4 - Trang 1-14 - 2006
Winfried Möller1, Winfried Barth2, Martin Kohlhäufl3, Karl Häussinger3, Wolfgang G Kreyling1
1GSF National Research Center for Environment and Health, Clinical Research Group 'Inflammatory Lung Diseases' and Institute for Inhalation Biology, Gauting, Germany
2GSI National Research Center for Heavy Ions, Darmstadt, Germany
3Asklepios Hospital Munich-Gauting, Center for Respiratory Medicine, Gauting, Germany

Tóm tắt

Magnetic microparticles being ingested by alveolar macrophages can be used as a monitor for intracellular phagosome motions and cytoskeletal mechanical properties. These studies can be performed in the human lung after voluntary inhalation. The influence of cigarette smoking and lung diseases on cytoskeleton dependent functions was studied. Spherical 1.3 μm diameter ferrimagnetic iron oxide particles were inhaled by 17 healthy volunteers (40 – 65 years), 15 patients with sarcoidosis (SAR), 12 patients with idiopathic pulmonary fibrosis (IPF), and 18 patients with chronic obstructive bronchitis (COB). The retained particles were magnetized and aligned in an external 100 mT magnetic field. All magnetized particles induce a weak magnetic field of the lung, which was detected by a sensitive SQUID (superconducting quantum interference device) sensor. Cytoskeletal reorganizations within macrophages and intracellular transport cause stochastic magnetic dipole rotations, which are reflected in a decay of the magnetic lung field, called relaxation. Directed phagosome motion was induced in a weak magnetic twisting field. The resistance of the cytoplasm to particle twisting was characterized by the viscosity and the stiffness (ratio between stress to strain) of the cytoskeleton. One week after particle inhalation and later macrophage motility (relaxation) and cytoskeletal stiffness was not influenced by cigarette smoking, neither in healthy subjects, nor in the patients. Patients with IPF showed in tendency a faster relaxation (p = 0.06). Particle twisting revealed a non-Newtonian viscosity with a pure viscous and a viscoelastic compartment. The viscous shear was dominant, and only 27% of the shear recoiled and reflected viscoelastic properties. In patients with IPF, the stiffness was reduced by 60% (p < 0.02). An analysis of the shear rate and stress dependence of particle twisting allows correlating the rheological compartments to cytoskeletal subunits, in which microtubules mediate the pure viscous (non-recoverable) shear and microfilaments mediate the viscoelastic (recoverable) behavior. The missing correlation between relaxation and particle twisting shows that both stochastic and directed phagosome motion reflect different cytoskeletal mechanisms. Faster relaxation and a soft cytoskeleton in patients with IPF indicate alterations in cytoskeleton dependent functions of alveolar macrophages, which may cause dysfunction's in the alveolar defense, like a slower migration, a retarded phagocytosis, a disturbed phagosome lysosome fusion and an impaired clearance.

Tài liệu tham khảo

Gehr P: Respiratory tract structure and function. Journal of Toxicology and Environmental Health. 1984, 13 (2-3): 235-249. ICRP Publication 66: Human respiratory tract model for radiological protection. A report of a Task Group of the International Commission on Radiological Protection. Annals of the ICRP. Edited by: Smith H. 1994, Oxford, UK , Elsevier Science Ltd., 24 (1-3): 1-482. 10.1016/0146-6453(94)90029-9. Nyberg K, Johansson A, Camner P: Intraphagosomal pH in alveolar macrophages studied with fluorescein- labeled amorphous silica particles. Experimental Lung Research. 1989, 15 (1): 49-62. Tjelle TE, Lovdal T, Berg T: Phagosome dynamics and function. Bioessays. 2000, 22 (3): 255-263. 10.1002/(SICI)1521-1878(200003)22:3<255::AID-BIES7>3.0.CO;2-R. Mullins C, Bonifacino JS: The molecular machinery for lysosome biogenesis. Bioessays. 2001, 23 (4): 333-343. 10.1002/bies.1048. Valerius NH, Stendahl OI, Hartwig JH, Stossel TP: Distribution of actin-binding protein and myosin in neutrophils during chemotaxis and phagocytosis. Advances in Experimental Medicine and Biology. 1982, 141: 19-28. Stossel TP: On the crawling of animal cells. Science. 1993, 260 (5111): 1086-1094. Janmey PA: The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiological Reviews. 1998, 78 (3): 763-781. Cohen D, Arai SF, Brain JD: Smoking impairs long-term dust clearance from the lung. Science. 1979, 204 (4392): 514-517. Stahlhofen W, Möller W: Behaviour of magnetic micro-particles in the human lung. Radiation and Environmental Biophysics. 1993, 32 (3): 221-238. 10.1007/BF01209772. Möller W, Barth W, Kohlhäufl M, Häussinger K, Stahlhofen W, Heyder J: Human alveolar long-term clearance of ferromagnetic iron-oxide microparticles in healthy and diseased subjects. Experimental Lung Research. 2001, 27: 547-568. 10.1080/019021401753181827. Möller W, Häussinger K, Winkler-Heil R, Stahlhofen W, Meyer T, Hofmann W, Heyder J: Mucociliary and long-term particle clearance in the airways of healthy non-smokers. Journal of Applied Physiology. 2004, 97 (6): 2200-2206. 10.1152/japplphysiol.00970.2003. Stokinger HE: A review of world literature finds iron oxides noncarcinogenic. American Industrial Hygiene Association Journal. 1984, 45 (2): 127-133. Barth W, Möller W, Pohlit W, Stahlhofen W, Wiegand J: Magnetopneumographic estimation of particle phagocytosis in the human lungs. Journal of Aerosol Science. 1994, 25 (Suppl.): S491-492. 10.1016/0021-8502(94)90475-8. Möller W, Takenaka S, Rust M, Stahlhofen W, Heyder J: Probing mechanical properties of living cells by magnetopneumography. Journal of Aerosol Medicine. 1997, 10 (3): 173-186. Möller W, Nemoto I, Matsuzaki T, Hofer T, Heyder J: Magnetic phagosome motion in J774A.1 macrophages: influence of cytoskeletal drugs. Biophysical Journal. 2000, 79 (2): 720-730. Möller W, Kreyling WG, Kohlhäufl M, Häussinger K, Heyder J: Macrophage functions measured by magnetic microparticles in vivo and in vitro. Journal of Magnetism and Magnetic Materials. 2001, 225 (1-2): 218-225. 10.1016/S0304-8853(00)01261-0. Aizawa Y, Takata T, Karube H, Tatsumi H, Inokuchi N, Kotani M, Chiyotani K: Magnetometric evaluation of the effects of gallium arsenide on the clearance and relaxation of iron particles. Industrial Health. 1993, 31 (4): 143-153. Okada M, Karube H, Niitsuya M, Aizawa Y, Okayasu I, Kotani M: In vitro toxicity of gallium arsenide in alveolar macrophages evaluated by magnetometry, cytochemistry and morphology. Tohoku Journal of Experimental Medicine. 1999, 189 (4): 267-281. 10.1620/tjem.189.267. Möller W, Hofer T, Ziesenis A, Karg E, Heyder J: Ultrafine particles cause cytoskeletal dysfunctions in macrophages. Toxicology and Applied Pharmacology. 2002, 182: 197-207. 10.1006/taap.2002.9430. Möller W, Brown DM, Kreyling WG, Stone V: Ultrafine particles cause cytoskeletal dysfunctions in macrophages: role of intracellular calcium. Particle and Fibre Toxicology. 2005, 2: 7-10.1186/1743-8977-2-7. Gehr P, Klauser M, Im Hof V: Intracellular motility of pulmonary macrophages from smokers and nonsmokers. Advances in biomagnetism. Edited by: Williamson SJ, Hoke M, Stroink G, Kotani M. 1989, New York , Plenum Press, 473 -4476. Valberg PA, Jensen WA, Rose RM: Cell organelle motions in bronchoalveolar lavage macrophages from smokers and nonsmokers. American Review of Respiratory Disease. 1990, 141 (5 Pt 1): 1272-1279. Im Hof V, Klauser M, Gehr P: Phagocytic properties and organelle motility of pulmonary macrophages from smokers and nonsmokers estimated in vitro by magnetometric means. European Respiratory Journal. 1990, 3 (2): 157-162. Siafakas NM, Vermeire P, Pride NB, Paoletti P, Gibson J, Howard P, Yernault JC, Decramer M, Higenbottam T, Postma DS, Rees J: Optimal assessment and management of chronic obstructive pulmonary disease (COPD). The European Respiratory Society Task Force. European Respiratory Journal. 1995, 8 (8): 1398-1420. 10.1183/09031936.95.08081398. Ferris BG: Epidemiology Standardization Project (American Thoracic Society). American Review of Respiratory Disease. 1978, 118 (6 Pt 2): 1-120. Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC: Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. European Respiratory Journal. 1993, 16 (Suppl.): 5-40. Cotes JE, Chinn DJ, Quanjer PH, Roca J, Yernault JC: Standardization of the measurement of transfer factor (diffusing capacity). Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. European Respiratory Journal Supplement. 1993, 16: 41-52. Möller W, Scheuch G, Sommerer K, Heyder J: Preparation of spherical monodisperse ferrimagnetic iron-oxide microparticles between 1 and 5 µm diameter. Journal of Magnetism and Magnetic Materials. 2001, 225 (1-2): 8-16. 10.1016/S0304-8853(00)01221-X. Freedman AP, Robinson SE, O'Leary K, Goodman L, Stellman JM: Non-invasive magnetopneumographic determination of lung dust loads in steel arc welders. British Journal of Industrial Medicine. 1981, 38 (4): 384-388. Möller W, Stahlhofen W: Magnetic material in the lungs of dental technicians. Journal of Aerosol Science. 1989, 20 (8): 1345-1348. 10.1016/0021-8502(89)90833-1. Stahlhofen W, Möller W, Godleski J: Relaxation measurements with spherical magnetic particles in the human lungs. Journal of Aerosol Science. 1990, 21 (3): 355-362. 10.1016/0021-8502(90)90058-6. Schürch S, Gehr P, Im Hof V, Geiser M, Green F: Surfactant displaces particles toward the epithelium in airways and alveoli. Respiration Physiology. 1990, 80 (1): 17-32. 10.1016/0034-5687(90)90003-H. Nemoto I, Möller W: Models of phagosome motion within cells measured by cytomagnetometry incorporating viscoelasticity. Recent Advances in Biomagnetism. Edited by: Yoshimoto T, Kotani M, Kuriki S, Karibe H, N. N. 1999, Sendai, Japan , Tohoku University Press, 1121-1124. Nemoto I, Möller W: A viscoelastic model of phagosome motion within cells based on cytomagnetometric measurements. IEEE Transactions on Biomedical Engineering. 2000, 47 (2): 170-182. 10.1109/10.821751. Nemoto I: A model of magnetization and relaxation of ferrimagnetic particles in the lung. IEEE Transactions on Biomedical Engineering. 1982, 29 (12): 745-752. Wilkinson WL: Non-Newtonian fluids; fluid mechanics, mixing and heat transfer. International series of monographs on chemical engineering, v 1. 1960, New York , Pergamon Press, xiv, 138- Möller W, Guzijan V, Pohlit W, Stahlhofen W, Wenisch T, Wiegand J: Cytomagnetometry with ferrimagnetic micro-particles - influence of particle size and dispersity. Journal of Aerosol Science. 1992, 23 (Supplement): S519-S520. 10.1016/0021-8502(92)90463-6. Nemoto I, Ogura K, Toyotama H: Estimation of the energy of cytoplasmic movements by magnetometry: effects of temperature and intracellular concentration of ATP. IEEE Transactions on Biomedical Engineering. 1989, 36 (6): 598-607. 10.1109/10.29454. Kreipe H, Radzun HJ, Heidorn K, Barth J, Kiemle-Kallee J, Petermann W, Gerdes J, Parwaresch MR: Proliferation, macrophage colony-stimulating factor, and macrophage colony-stimulating factor-receptor expression of alveolar macrophages in active sarcoidosis. Laboratory Investigation. 1990, 62 (6): 697-703. Mueller-Quernheim J, Pfeifer S, Maennel D, Strausz J, Ferlinz R: Lung-restricted activation of the alveolar macrophage/monocyte system in pulmonary sarcoidosis. American Review of Respiratory Disease. 1992, 145 (1): 187-192. Wang N, Butler JP, Ingber DE: Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993, 260 (5111): 1124-1127. Okada M, Inoue Y, Karube H, Niitsuya M, Tohnori H, Aizawa Y, Okayasu I, Kotani M: Cytotoxic evaluation of arsenic compounds in alveolar macrophages in h amsters. Applied Organometallic Chemistry. 2001, 15: 252-260. 10.1002/aoc.145. Stamenovic D: Micromechanical foundations of pulmonary elasticity. Physiological Reviews. 1990, 70 (4): 1117-1134. Ingber DE: Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. Journal of Cell Science. 1993, 104 (Pt 3): 613-627. Stamenovic D, Fredberg JJ, Wang N, Butler JP, Ingber DE: A microstructural approach to cytoskeletal mechanics based on tensegrity. Journal of Theoretical Biology. 1996, 181 (2): 125-136. 10.1006/jtbi.1996.0120. Ashkin A, Schuetze K, Dziedzic JM, Euteneuer U, Schliwa M: Force generation of organelle transport measured in vivo by an infrared laser trap (see comments). Nature. 1990, 348 (6299): 346-348. 10.1038/348346a0. Janmey PA, Hvidt S, Peetermans J, Lamb J, Ferry JD, Stossel TP: Viscoelasticity of F-actin and F-actin/gelsolin complexes. Biochemistry. 1988, 27 (21): 8218-8227. 10.1021/bi00421a035. Janmey PA, Hvidt S, Kaes J, Lerche D, Maggs A, Sackmann E, Schliwa M, Stossel TP: The mechanical properties of actin gels. Elastic modulus and filament motions. Journal of Biological Chemistry. 1994, 269 (51): 32503-32513.