Chuyển động và phản ứng đàn hồi của tuabin gió nổi theo dõi

Journal of Ocean Engineering and Marine Energy - Tập 9 - Trang 43-67 - 2022
Azin Lamei1, Masoud Hayatdavoodi1,2, H. Ronald Riggs3
1Civil Engineering Department, School of Science and Engineering, University of Dundee, Dundee, UK
2College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
3Civil and Environmental Engineering Department, University of Hawaii, Honolulu, USA

Tóm tắt

Một khái niệm tuabin gió nổi đa đơn vị, tuabin gió nổi theo dõi, được giới thiệu. Trong khái niệm này, cấu trúc nổi là một nền tảng hình tam giác chứa ba tuabin gió 5 MW và được neo với đáy biển bằng hệ thống neo có trục quay. Hệ thống neo này cho phép cấu trúc quay xung quanh trục để tối thiểu hóa momen quay tổng cộng do tải trọng môi trường tác động lên trục. Trong nghiên cứu này, các thông số tối ưu của các dây neo và vị trí của trục được xác định. Để xác định vị trí ưa thích của trục, phản ứng của cấu trúc dưới tải trọng gió và sóng đồng hướng và không đồng hướng được tính toán. Chuyển động của cấu trúc được lấy từ một mô hình số miền tần số kết hợp với phương pháp phần tử hữu hạn cho phân tích thủy động lực và khí động lực. Tải trọng thủy động và khí động được tính toán dựa trên lý thuyết khuếch tán sóng và phương pháp động lực bánh cánh tĩnh, tương ứng. Cuối cùng, với cấu hình tối ưu của hệ thống neo, chuyển động và phản ứng đàn hồi khí và thủy của các tuabin gió nổi theo dõi hoàn toàn linh hoạt dưới tác động của tải trọng sóng và gió sẽ được xác định và thảo luận.

Từ khóa

#tuabin gió nổi #hệ thống neo #phản ứng đàn hồi #tải trọng sóng #tải trọng gió

Tài liệu tham khảo

Bae YH, Kim MH (2014) Coupled dynamic analysis of multiple wind turbines on a large single floater. Ocean Eng 92:175–187. https://doi.org/10.1016/j.oceaneng.2014.10.001 Bae YH, Kim MH (2015) The dynamic coupling effects of a MUFOWT (multiple unit floating offshore wind turbine) with partially broken blade. J Ocean Wind Energy 2:89–97 Barltrop N (1993) Multiple unit floating offshore wind farm (MUFOW). Wind Eng 17:183–188 Bashetty S, Ozcelik S (2020) Design and stability analysis of an offshore floating multi-turbine platform. In: 2020 IEEE green technologies conference (GreenTech), April 1–3, Oklahoma, United States, pp 1–6 Bashetty S, Ozcelik S (2020a) Aero-hydrodynamic analysis of an offshore floating multi-wind-turbine platform—part I. In: 2020 IEEE 3rd international conference on renewable energy and power engineering (REPE), IEEE, October 9–11, Edmonton, Canada, pp 1–6 Bashetty S, Ozcelik S (2020b) Aero-hydrodynamic analysis of an offshore floating multi-wind-turbine platform—part II. In: 2020 IEEE 3rd international conference on renewable energy and power, October 9–11, Edmonton, Canada, pp 1–6 DNV (Det Norske Veritas) (2015) DNV-GL-OS-E302 Offshore Mooring Chain. Technical Report 2013. DNV Farr H, Ruttenberg B, Walter RK, Wang YH, White C (2021) Potential environmental effects of deepwater floating offshore wind energy facilities. Ocean Coast Manag 207:1–16. https://doi.org/10.1016/j.ocecoaman.2021.105611 Global Maritime Moorlink (2016) Product Catalogue 2016. Technical Report, Global Maritime Moorlink Hanssen JE, Margheritini L, O’Sullivan K, Mayorga P, Martinez I, Arriaga A, Agos I, Steynor J, Ingram D, Hezari R, Todalshaug JH (2015) Design and performance validation of a hybrid offshore renewable energy platform. In: 2015 tenth international conference on ecological vehicles and renewable energies (EVER), IEEE, March 31–April 2, Monte-Carlo, Monaco, pp 1–8. https://doi.org/10.1109/EVER.2015.7113017 Henderson AH, Patel MH (2000) Floating offshore wind farms—an option? In: Offshore wind energy in Mediterranean and Other European Seas, April 13–15, Siracusa, Sicilia, Italy, pp 1–15 Henderson AH, Patel MH (2003) On the modelling of a floating offshore wind turbine. Wind Energy 6:53–86. https://doi.org/10.1002/we.83 Hu C, Sueyoshi M, Liu C, Liu Y (2014) Hydrodynamic analysis of a semi-submersible-type floating wind turbine. J Ocean Wind Energy 1:202–208 Huang LL, Riggs HR (2000) The hydrostatic stiffness of flexible floating structures for linear hydroelasticity. Mar Struct 13:91–106 Huang AS, Moreno FM, Tannuri EA, Câmara JGA (2019) Equilibrium position analysis for offloading operations with turret-moored FPSO. J Offshore Mech Arct Eng 141:1–9. https://doi.org/10.1115/1.4042531 Ishihara T, Van Phuc P, Sukegawa H (2007a) A numerical study on the dynamic response of a floating offshore wind turbine system due to resonance and nonlinear wave. In: 2nd European offshore wind (EOW) conference, December 4–6, Berlin, Germany, pp 4–6 Ishihara T, Van Phuc P, Sukegawa H, Shimada K, Ohyama T (2007b) A study on the dynamic response of a semi-submersible floating offshore wind turbine system. Part 1: a water tank test. In: 12th international conference on wind engineering, July 1–6. Cairns, Australia, pp 2511–2518 Jang HK, Kim HC, Kim MH, Kim KH (2015) Coupled dynamic analysis for multi-unit floating offshore wind turbine in maximum operational and survival conditions. In: ASME 34th international conference on ocean, offshore and Arctic engineering, OMAE2015, ASME, May 31–June 5, Newfoundland, pp 1–8. https://doi.org/10.1115/OMAE2015-42062 Jonkman JM, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. Technical Report, National Renewable Energy Laboratory (NREL), Golden, CO Jonkman JM, Wright AD, Hayman GJ, Robertson AN (2018) Full-system linearization for floating offshore wind turbines in OpenFAST. In: 1st international offshore wind technical conference, November 4–7, San Francisco, CA, USA, pp 1–10. https://doi.org/10.1115/iowtc2018-1025 Kang HY, Kim MH, Kim KH, Hong KY (2017) Hydroelastic analysis of multi-unit floating offshore wind turbine platform (MUFOWT). In: Proceedings of the international offshore and polar engineering conference, June 25–30, San Francisco, CA, pp 554–560 Kim MH, Ran Z, Zheng W (2001) Hull/mooring coupled dynamic analysis of a truss spar in time-domain. Int J Offshore Polar Eng 11:301–308 Kvittem MI, Moan T (2014) Frequency versus time domain fatigue analysis of a semisubmersible wind turbine tower. J Offshore Mech Arct Eng 137:1–11. https://doi.org/10.1115/1.4028340 Lamei A, Hayatdavoodi M (2020) On motion analysis and elastic response of floating offshore wind turbines. J Ocean Eng Mar Energy 6:71–90. https://doi.org/10.1007/s40722-019-00159-2 Lamei A, Hayatdavoodi M, Riggs HR (2022) Motion and elastic deformations of floating offshore wind turbines due to combined wind and waves. J Renew Sustain Energy (submitted and under review) Lamei A, Hayatdavoodi M, Wong C, Tang B (2019) On motion and hydroelastic snalysis of a floating offshore wind turbine. In: ASME 2019 38th international conference of ocean, offshore and arctic engineering, OMAE 2019, ASME, June 9–14. Glasgow, UK, pp 1–10 Lee J, Zhao F (2022) Global offshore wind report 2022. Technical Report, Global Wind Energy Council, Brussels, Belgium Li S, Lamei A, Hayatdavoodi M, Wong C (2019) Concept design and analysis of wind-tracing floating offshore wind turbines. In: ASME 2019 2nd international offshore wind technical conference, ASME, November 3–6, St. Julian’s, Malta, pp. 231–238. https://doi.org/10.1115/IOWTC2019-7580 MacCamy RC, Fuchs RA (1954) Wave forces on piles: a diffraction theory. Tech. Memo. No. 69, Beach Erosion Board. Army Corps of Engineers, pp 1–17 Nair BG, Vijayakumar R, Ananthakrishnan P (2019) Hydrodynamic aspects of turret-moored FPSOs. Lecture notes in civil engineering, vol 22. Springer, Singapore, pp 401–422 NumSoft Technologies (2020) HYDRAN-XR, hydrodynamic response analysis with integrated structural finite element analysis, version 20.1. Technical Report. Numsoft Technologies Wang K, Ji C, Xue H, Tang W (2016) Frequency domain approach for the coupled analysis of floating wind turbine system. Ships Offshore Struct 5302:1–8. https://doi.org/10.1080/17445302.2016.1241365 Weiss CVC, Guanche R, Ondiviela B, Castellanos OF, Juanes J (2018) Marine renewable energy potential: a global perspective for offshore wind and wave exploitation. Energy Convers Manage 177:43–54. https://doi.org/10.1016/j.enconman.2018.09.059 Wong C (2015) Wind-tracing rotational semi-submerged raft for multi-turbine wind power generation. European wind energy association offshore 2015 conference, March 10–12, Denmark, Copenhagen, pp 1–10 Zanganeh R, Thiagarajan K (2018) Prediction of the mean heading of a turret moored FPSO in bi-modal and bi-directional sea states. Appl Ocean Res 78:156–166. https://doi.org/10.1016/j.apor.2018.04.006