Motes enhance data recovery from satellite-relayed biologgers and can facilitate collaborative research into marine habitat utilization

Animal Biotelemetry - Tập 5 - Trang 1-15 - 2017
Tiphaine Jeanniard-du-Dot1,2, Kim Holland3, Gregory S. Schorr4, Danny Vo1
1Wildlife Computers, Redmond, USA
2Department of Fisheries and Oceans, Institut Maurice Lamontagne, Mont-Joli, Canada
3Hawaii Institute of Marine Biology, University of Hawaii, Honolulu, USA
4Marine Ecology and Telemetry Research, Seabeck, USA

Tóm tắt

The fields of biologging and telemetry have triggered significant advances in the understanding of animal behavior, physiological ecology and habitat utilization. Biologging devices (“tags”) can also measure aspects of the physical and biological characteristics of the animals’ environment. As marine ecosystems are less accessible than terrestrial ones and marine animals more elusive and difficult to study, data collected by tags attached to marine animals often have to be relayed via satellite. However, satellite availability is not continuous and decreases with decreasing latitude. Consequently, collection of sufficient data is even more challenging in the tropics and mid-latitudes than at the poles. To overcome this limitation and increase data throughput from biologgers, new land-based receiving stations (called Motes) that can receive, log and relay messages from devices transmitting on the Argos satellite frequency have been developed. We investigated the performance of Motes as enhancers of recovery of signals transmitted by tags normally destined for satellite relay. We quantified Mote reception range, coverage area, data throughput and data corruption rates and examined factors that might impact these parameters. To do so, we used all signals detected by two arrays of Motes installed in the Hawaiian Islands and in Southern California between latitudes 22 and 33°N. Second, using data from 12 sharks and 12 whales tagged near the two Mote arrays, we assessed how increased data recovery translated into improved ability to interpret the behavior of the tagged animals. Motes were capable of receiving up to 100% of messages transmitted within their reception range and overall presented a ~three- to fivefold increase in data message recovery compared to satellites alone. Message reception performance of Motes depended on their coverage area which in turn was affected by station elevation, the presence or not of obstacles within their line of sight, and the directionality of antennas. The increased quantity of data enabled improved biological interpretation of the animals studied. As such, Motes can improve our knowledge of marine animals’ ecology in relation to their physical and biological environments. Large-scale Mote arrays could potentially facilitate collaborative multi-disciplinary research projects, resulting in better ecosystem conservation and management.

Tài liệu tham khảo

Apitz SE, Elliott M, Fountain M, Galloway TS. European environmental management: moving to an ecosystem approach. Integr Environ Assess Manag. 2006;22:80–5. Argos System - CLS - Satellite Pass Prediction 2016. http://www.argos-system.org. Accessed 06 Aug 2016. Block BA, Holbrook CM, Simmons SE, Holland KN. Toward a national animal telemetry network for aquatic observations in the United States. Anim Biotelemetry. 2016;4:6. Bograd SJ, Block BA, Costa DP, Godley BJ. Biologging technologies: new tools for conservation. Introduction. Endanger Species Res. 2010;10:1–7. Bozeman B, Corley E. Scientists’ collaboration strategies: implications for scientific and technical human capital. Res Policy. 2004;33:599–616. Carretta JV, Forney KA, Lowry MS, Barlow J, Baker J, Hanson B, Muto MM. U.S. Pacific Marine Mammal Stock Assessments: 2007. NOAA Technical Memorandum, US Department of Commerce; 2007, p. 320. Cermeño P, Quílez-Badia G, Ospina-Alvarez A, Sainz-Trápaga S, Boustany AM, Seitz AC, Tudela S, Block BA. Electronic tagging of Atlantic bluefin tuna (Thunnus thynnus, L.) reveals habitat use and behaviors in the Mediterranean Sea. PLoS ONE. 2015;10:e0116638. Chrysafi A, Kuparinen A. Assessing abundance of populations with limited data: lessons learned from data-poor fisheries stock assessment. Environ Rev. 2015;24:25–38. Culnan MJ, Clark Williams C. How ethics can enhance organizational privacy: lessons from the choicepoint and TJX data breaches. MIS Q. 2009;33:673–87. Deutsch CJ, Reid JP, Bonde RK, Easton DE, Kochman HI, O’Shea TJ. Seasonal movements, migratory behavior, and site fidelity of West Indian manatees along the Atlantic coast of the United States. Wildl Monogr. 2003;151:1–77. Dewar H, Prince ED, Musyl MK, Brill RW, Sepulveda C, Luo J, Foley D, Orbesen ES, Domeier ML, Nasby-Lucas N, Snodgrass D, Michael Laurs R, Hoolihan JP, Block BA, McNaughton LM. Movements and behaviors of swordfish in the Atlantic and Pacific Oceans examined using pop-up satellite archival tags. Fish Oceanogr. 2011;20:219–41. Dragon AC, Bar-Hen A, Monestiez P, Guinet C. Comparative analysis of methods for inferring successful foraging areas from Argos and GPS tracking data. Mar Ecol Prog Ser. 2012;452:253–67. Ebadi A, Schiffauerova A. How to receive more funding for your research? Get connected to the right people! PLoS ONE. 2015;10:e0133061. Falcone EA, Schorr GS, Douglas AB, Calambokidis J, Henderson E, McKenna MF, Hildebrand J, Moretti D. Sighting characteristics and photo-identification of Cuvier’s beaked whales (Ziphius cavirostris) near San Clemente Island, California: a key area for beaked whales and the military? Mar Biol. 2009;156:2631–40. Fancy SG, Pank LF, Douglas DC, Curby CH, Garner GW, Amstrup SC, Regelin WL. Satellite telemetry: a new tool for wildlife research and management. Washington: Resource Publication, US Fish and Wildlife Services; 1988. p. 61. Gonzalez-Socoloske D, Olivera-Gómez LD, Reid JP, Espinoza-Marin C, Ruiz KE, Glander KE. First successful capture and satellite tracking of a West Indian manatee (Trichechus manatus) in Panama: feasibility of capture and telemetry techniques. Latin Am J Aquat Mamm. 2015. doi:10.5597/lajam00194. Guinet C, Vacquié-Garcia J, Picard B, Bessigneul G, Lebras Y, Dragon A, Viviant M, Arnould J, Bailleul F. Southern elephant seal foraging success in relation to temperature and light conditions: insight into prey distribution. Mar Ecol Prog Ser. 2014;499:285–301. Guisasola A, Baeza JA, Carrera J, Sin G, Vanrolleghem PA, Lafuente J. The influence of experimental data quality and quantity on parameter estimation accuracy. Educ Chem Eng. 2006;1:139–45. Harley CDG, Randall Hughes A, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL. The impacts of climate change in coastal marine systems. Ecol Lett. 2006;9:228–41. Hart KM, Hyrenbach KD. Satellite telemetry of marine megavertebrates: the coming of age of an experimental science. Endanger Species Res. 2009;10:9–20. Heide-Jorgensen M, Nordoy E, Oien N, Folkow L, Kleivane L, Blix A, Jensen M, Laidre K. Satellite tracking of minke whales (Balaenoptera acutorostrata) off the coast of northern Norway. J Cetacean Res Manag. 2001;3:175–8. Hirzel AH, Helfer V, Metral F. Assessing habitat-suitability models with a virtual species. Ecol Model. 2001;145:111–21. Hoegh-Guldberg O, Bruno JF. The impact of climate change on the world’s marine ecosystems. Science. 2010;328:1523–8. Hoenner X, Whiting SD, Hindell MA, McMahon CR. Enhancing the use of argos satellite data for home range and long distance migration studies of marine animals. PLoS ONE. 2012;7:e40713. Holis J, Pechac P. Elevation dependent shadowing model for mobile communications via high altitude platforms in built-up areas. IEEE Trans Antennas Propag. 2008;56:1078–84. Hussey NE, Kessel ST, Aarestrup K, Cooke SJ, Cowley PD, Fisk AT, Harcourt RG, Holland KN, Iverson SJ, Kocik JF, Mills Flemming JE, Whoriskey FG. Aquatic animal telemetry: a panoramic window into the underwater world. Science. 2015;348:1221. Jeanniard du Dot T, Trites AW, Arnould JPY, Speakman JB, Guinet C. Flipper strokes can predict energy expenditure and locomotion costs in free-ranging northern and Antarctic fur seals. Sci Rep. 2016;6:33912. Lee S, Bozeman B. The impact of research collaboration on scientific productivity. Soc Stud Sci. 2005;35:673–702. Lutcavage ME, Lam CH, Galuardi B. Seventeen years and $3 million dollars later: performance of PSAT tags deployed on Atlantic bluefin and bigeye tuna. Col Vol Sci Pap ICCAT. 2015;71:1757–65. Mate B, Best PB. Coastal and offshore movements of southern right whales on the South African coast revealed by satellite telemetry. Rep Int Whal Comm SC/60/BRG8; 2008. Musyl MK, Domeier ML, Nasby-Lucas N, Brill RW, McNaughton LM, Swimmer JY, Lutcavage MS, Wilson SG, Galuardi B, Liddle JB. Performance of pop-up satellite archival tags. Mar Ecol Prog Ser. 2011;433:1–28. Ockendon N, Baker DJ, Carr JA, White EC, Almond REA, Amano T, Bertram E, Bradbury RB, Bradley C, Butchart SHM, Doswald N, Foden W, Gill DJC, Green RE, Sutherland WJ, Tanner EVJ, Pearce-Higgins JW. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob Change Biol. 2014;20:2221–9. Payne NL, Taylor MD, Watanabe YY, Semmens JM. From physiology to physics: are we recognizing the flexibility of biologging tools? J Exp Biol. 2014;217:317–22. Pohlot BG, Ehrhardt N. An analysis of sailfish daily activity in the Eastern Pacific Ocean using satellite tagging and recreational fisheries data. ICES J Mar Sci 2017;fsx082. Richardson AJ, Brown CJ, Brander K, Bruno JF, Buckley L, Burrows MT, Duarte CM, Halpern BS, Hoegh-Guldberg O, Holding J, Kappel CV, Kiessling W, Moore PJ, O’Connor MI, Pandolfi JM, Parmesan C, Schoeman DS, Schwing F, Sydeman WJ, Poloczanska ES. Climate change and marine life. Biol Lett. 2012;8:907–9. Royer MA, Holland KN. Spatial dynamics of tiger sharks (Galeocerdo cuvier) around. In: Maui, Oahu. (ed. R.t.t.H.D.o.L.a.N. Resources). Hawaii Institute of Marine Biology - University of Hawaii at Manoa, Hawaii; 2016. Schorr GS, Falcone EA, Moretti DJ, Andrews RD. First long-term behavioral records from Cuvier’s beaked whales (Ziphius cavirostris) reveal record-breaking dives. PLoS ONE. 2014;9:e92633. Smith D, Punt A, Dowling N, Smith A, Tuck G, Knuckey I. Reconciling approaches to the assessment and management of data-poor species and fisheries with Australia’s harvest strategy policy. Mar Coast Fish. 2009;1:244–54. Thys TM, Ryan JP, Dewar H, Perle CR, Lyons K, O’Sullivan J, Farwell C, Howard MJ, Weng KC, Lavaniegos BE, Gaxiola-Castro G, Miranda Bojorquez LE, Hazen EL, Bograd SJ. Ecology of the Ocean Sunfish, Mola mola, in the southern California Current System. J Exp Mar Biol Ecol. 2015;471:64–76. Wilmers CC, Nickel B, Bryce CM, Smith JA, Wheat RE, Yovovich V. The golden age of bio-logging: how animal-borne sensors are advancing the frontiers of ecology. Ecology. 2015;96:1741–53. Wright BM, Ford JKB, Ellis GM, Deecke VB, Shapiro AD, Battaile BC, Trites AW. Fine-scale foraging movements by fish-eating killer whales (Orcinus orca) relate to the vertical distributions and escape responses of salmonid prey (Oncorhynchus spp.). Mov Ecol. 2017;5:3.