Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hoạt tính diệt muỗi và kháng Plasmodium của Senna occidentalis (Cassiae) và Ocimum basilicum (Lamiaceae) từ đồi Maruthamalai đối với Anopheles stephensi và Plasmodium falciparum
Tóm tắt
Hàng năm, các bệnh do muỗi truyền nhiễm đến gần 700 triệu người, dẫn đến hơn 1 triệu ca tử vong. Trong nghiên cứu này, chúng tôi đã đánh giá hoạt tính diệt ấu trùng, diệt nhộng và độc tính khói của chiết xuất lá Senna occidentalis và Ocimum basilicum đối với vector sốt rét Anopheles stephensi. Hơn nữa, hoạt tính chống plasmodium của các chiết xuất thực vật được đánh giá đối với các chủng Plasmodium falciparum kháng chloroquine (CQ-r) và nhạy cảm với chloroquine (CQ-s). Trong các thí nghiệm diệt ấu trùng và diệt nhộng, LC50 của S. occidentalis dao động từ 31.05 (ấu trùng instar I) đến 75.15 ppm (nhộng), và LC50 của O. basilicum dao động từ 29.69 (ấu trùng instar I) đến 69 ppm (nhộng). Các thí nghiệm độc tính khói được thực hiện trên người trưởng thành cho thấy rằng các cuộn S. occidentalis và O. basilicum tạo ra tỷ lệ tử vong tương đương với đối chứng dương tính dựa trên pyrethrin (38, 52 và 42%, tương ứng). Trong các thử nghiệm chống plasmodium, nồng độ ức chế 50% (IC50) của Senna occidentalis là 48.80 μg/ml (CQ-s) và 54.28 μg/ml (CQ-r), trong khi IC50 của O. basilicum là 68.14 μg/ml (CQ-s) và 67.27 μg/ml (CQ-r). Tóm lại, các loại thảo dược này có thể được coi là nguồn tiềm năng của các chất chuyển hóa để xây dựng các công cụ kiểm soát sốt rét mới và an toàn hơn.
Từ khóa
#sốt rét #Senna occidentalis #Ocimum basilicum #Anopheles stephensi #Plasmodium falciparum #diệt ấu trùng #độc tính khói #kháng chloroquineTài liệu tham khảo
Ahmet A, Medine G, Meryem Þ, Hatice Ú, Fikrettin Þ, Karaman U (2005) Antimicrobial effects of Ocimum basilicum (Labiatae) extract. Turk J Biol 29:155–160
Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472
Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490
Amer A, Mehlhorn H (2006c) Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol Res 99:473–477
Amer A, Mehlhorn H (2006d) The sensilla of Aedes and Anopheles mosquitoes and their importance in repellency. Parasitol Res 99:491–499
Azizullah A, Rehman ZU, Ali I, Murad W, Muhammad N, Ullah W, Hader D-P (2014) Chlorophyll derivatives can be an efficient weapon in the fight against dengue. Parasitol Res 113:4321–4326
Bagavan A, Rahuman AA, Kamaraj C, Kaushik NK, Mohanakrishnan D, Sahal D (2011a) Antiplasmodial activity of botanical extracts against Plasmodium falciparum. Parasitol Res 108:1099–1109
Bagavan A, Rahuman AA, Kaushik NK, Sahal D (2011b) In vitro antimalarial activity of medicinal plant extracts against Plasmodium falciparum. Parasitol Res 108:15–22
Becker N (2011) Natural remedies in the fight against insects. In: Mehlhorn H (ed) Nature helps. Parasitol Res Monographs 1: 55–76
Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res, doi:10.1007/s00436-015-4586-9
Benelli G (2015b) Plant-synthesized nanoparticles in the fight against mosquito vectors: an eco-friendly tool against mosquito vectors? In: “Nanoparticles in the fight against parasites” (Editor Heinz Mehlhorn), Parasitology Research Monographs, Springer, 2192–3671, in press
Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res 114:391–397
Bhat PG, Surolia N (2001) In vitro antimalarial activity of extracts of three plants used in the traditional medicine of India. Am J Trop Med Hyg 65:304–308
Chopra RN, Nayar SL, Chopra IC (1956) Glossary of Indian medicinal plants. CSIR, New Delhi, p 179
Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 14:1519–1529
Egharevba Omoregie H, Anselem OC, Abdullahi MS, Sabo M, Okwute et al (2010) Phytochemical analysis and broad spectrum antimicrobial activity of Cassia occidentalis L. (whole plant) New York Sci J 3:74–81
Elliot M, Janesn NF, Potter C (1978) The future of pyrethroids in insect control. Annu Rev Entomol 23:443–469
El-Tahir A, Satti GMH, Khalid SA (1999) Antiplasmodial activity of selected sudanese medicinal plants with emphasis on Acacia nilotica. Phytother Res 13:474–478
Finney DJ (1971) Probit analysis. Cambridge University, London, pp 68–78
Gasquet M, Delmas F, Timon-David P, Keita A, Guido M, Koita N, Diallo D, Doumbo O (1993) Evaluation in vitro and in vivo of a traditional antimalarial, ‘malarial 5’. Fitoterapia 64:423–426
Govindarajan M, Sivakumar R, Rajeswary M, Yogalakshmi K (2013) Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Exp Parasitol 134:7–11
Ibrahim MA, Aliyu AB, Sallau AB, Bashir M, Yunusa I, Umar TS (2010) Senna occidentalis leaf extract possesses antitrypanosomal activity and ameliorates the trypanosome-induced anemia and organ damage. Pharmacogn Res 2:175–180
Jensen M, Mehlhorn H (2009) Seventy-five years of Resochin® in the fight against malaria. Parasitol Res 105:609–627
Kamaraj PC, Rahuman AA, Bagavan A (2008) Screening for antifeedant and larvicidal activity of plant extracts against Helicoverpa armigera (Hübner), Sylepta derogata (F.) and Anopheles stephensi (Liston). Parasitol Res 103:1361–1368
Kaou AM, Mahiou-Leddet V, Hutter S, Aïnouddine S, Hassani S, Yahaya I, Azas N, Ollivier E (2008) Antimalarial activity of crude extracts from nine African medicinal plants. J Ethnopharmacol 116:74–83
Kayembe JS, Taba KM, Ntumba K, Tshiongo MTC, Kazadi TK (2010) In vitro anti-malarial activity of 20 quinones isolated from four plants used by traditional healers in the Democratic Republic of Congo. J Med Plant Res 4:991–994
Khare CP (2007) Indian medicinal plants. Springer, USA
Kovendan K, Murugan K, Vincent S, Barnard DR (2012) Studies on larvicidal and pupicidal activity of Leucas aspera Willd (Lamiaceae) and bacterial insecticide, Bacillus sphaericus against malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 110:195–203
Liu H, Xu Q, Zhang L, Liu N (2005) Chlorpyrifos resistance in mosquito Culex quinquefasciatus. J Med Entomol 42:815–820
Mehlhorn H (ed) (2011) Nature helps. How plants and other organisms contribute to solve health problems. Parasitol Res Monographs, Springer, Berlin, New York, pp 1–372
Mehlhorn H, Schmahl G, Schmidt J (2005) Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitol Res 95:363–365
Mehlhorn H, Al-Rasheid KA, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110:259–265
Murugan K, Murugan P, Noortheen A (2007) Larvicidal and repellent potential of Albizzia amara Boivin and Ocimum basilicum Linn against dengue vector, Aedes aegypti (Insecta: Diptera: Culicidae). Bioresour Technol 98:198–201
Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Kumar PM, Subramaniam J, Suresh U (2015a) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114:2243–2253
Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015b) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138
Murugan K, Priyanka V, Dinesh D, Madhiyazhagan P, Panneerselvam C, Subramaniam J, Suresh U, Chandramohan B, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Khater HF, Messing RH, Benelli G (2015c) Enhanced predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector Aedes aegypti in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol Res. doi:10.1007/s00436-015-4582-0
Murugan K, Venus JSE, Panneerselvam C, Bedini S, Conti B, Nicoletti M, Kumar Sarkar S, Hwang JS, Subramaniam J, Madhiyazhagan P, Mahesh Kumar P, Dinesh D, Suresh U, Benelli G (2015d) Biosynthesis, mosquitocidal and antibacterial properties of Toddalia asiatica-synthesized silver nanoparticles: do they impact predation of guppy Poecilia reticulata against the filariasis mosquito Culex quinquefasciatus? Environ Sci Poll Res, doi:10.1007/s11356-015-4920-x
Nguta JM, Mbaria JM, Gakuya DW, Gathumbi PK, Kiama SG (2010) Antimalarial herbal remedies of Msambweni, Kenya. J Ethnopharmacol 128:424–432
Ntonga PA, Baldovini N, Mouray E, Mambu L, Belong P, Grellier P (2014) Activity of Ocimum basilicum, Ocimum canum, and Cymbopogon citratus essential oils against Plasmodium falciparum and mature-stage larvae of Anopheles funestus s.s. Parasite 21:1–8
Panneerselvam C, Murugan K (2013) Adulticidal, repellent, and ovicidal properties of indigenous plant extracts against the malarial vector, Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112:679–692
Rahuman AA (2011) Efficacies of medicinal plant extracts against blood-sucking parasites. In: Mehlhorn H (ed) Nature helps. Parasitol Res Monographs 1: 19–54
Raja V, John R, Alex E, William JS (2014) Insecticidal and growth regulating activity of crude leaf extracts of Cassia occidentalis L. (Caesalpiniaceae) against the urban malaria vector, Anopheles stephensi Liston (Diptera: Culicidae). Asian Pac J Trop Dis 4:S578–S582
Semmler M, Abdel-Ghaffar F, Al-Rasheid KAS, Mehlhorn H (2009) Nature helps: from research to products against blood sucking arthropods. Parasitol Res 105:1483–1487
Siddiqui BS, Aslam H, Ali ST, Begum S, Khatoon N (2007a) Two new triterpenoids and a steroidal glycoside from the aerial parts of Ocimum basilicum. Chem Pharm Bull (Tokyo) 55:516–519
Siddiqui BS, Aslam H, Begum S, Ali ST (2007b) New cinnamic acid esters from Ocimum basilicum. Nat Prod Res 21:736–741
Siems KJ, Mockenhaupt FP, Bienzle U, Gupta MP, Eich E (1999) In vitro antiplasmodial activity of Central American medicinal plants. Trop Med Int Health 4:611–615
Simon JE, Morales MR, Phippen WB, Vieira RF, Hao Z (1999) A source of aroma compounds and a popular culinary and ornamental herb. In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, pp 499–505
Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M (2004) Simple and inexpensive fluorescence-based technique for high throughput antimalarial drug screening. Antimicrob Agents Chemother 48:1803–1806
Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562
Taylor L (2005) The healing power of rainforest herbs. http://www.raintree.com/fedegosa.htm
Thangam S, Kathiresan K (1992) Smoke repellency and killing effect of marine plants against Culex quinquefasciatus. Trop Biomed 9:35–38
Tona L, Ngimbi NP, Tsakala M, Mesia K, Cimanga K, Apers S, De Bruyne T, Pieters L, Totté J, Vlietinck AJ (1999) Antimalarial activity of 20 crude extracts from nine African medicinal plants used in Kinshasa, Congo. J Ethnopharmacol 68:193–203
Tona L, Mesia K, Ngimbi NP, Chrimwami B, Okond'ahoka, Cimanga K, de Bruyne T, Apers S, Hermans N, Totte J, Pieters L, Vlietinck AJ (2001) In-vivo antimalarial activity of Cassia occidentalis, Morinda morindoides and Phyllanthus niruri. Ann Trop Med Parasitol 95:47–57
Tona L, Cimanga RK, Mesia K, Musuamba CT, De Bruyne T, Apers S, Hernans N, Miert SV, Pieters L, Totté J, Vlietinck AJ (2004) In vitro antiplasmodial activity of extracts and fractions from seven medicinal plants used in Democratic Republic of Congo. J Ethnopharmacol 93:27–32
Trager W, Jensen J (1976) Human malaria parasites in continuous culture. Science 193:673–675
Usha Devi C, Neena V, Atul PK, Pillai CR (2001) Antiplasmodial effect of three medicinal plants: a preliminary study. Curr Sci 80:917–919
Vahiha R, Venkatachalam MR, Murugan K, Jebanesan A (2002) Larvicidal efficacy of Pavonia zeylanica L. and Acacia ferruginea D.C. against Culex quinquefasciatus say. Bioresour Technol 82:203–204
Wattanachai P, Tintanon B (1999) Resistance of Aedes aegypti to chemical compounds in aerosol insecticide products in different areas of Bangkok Thailand. Comm Dis J 25:188–191
WHO (2005) Guidelines for laboratory and field-testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/2005.13
WHO (2014) Malaria. Fact sheet N°94
Yadav JP, Arya V, Yadav S, Panghal M, Kumar S, Dhankhar S (2010) Cassia occidentalis L.: a review on its ethnobotany, phytochemical and pharmacological profile. Fitoterapia 81:223–230
Zheljazkov VD, Callahan A, Cantrell CL (2008) Yield and oil composition of 38 basil (Ocimum basilicum L.) accessions grown in Mississippi. J Agric Food Chem 56:241–245