Mosquito transgenesis for malaria control
Tài liệu tham khảo
WHO, 2020
Global Health Estimates, 2020
Graumans, 2020, When is a Plasmodium-infected mosquito an infectious mosquito?, Trends Parasitol., 36, 705, 10.1016/j.pt.2020.05.011
Smith, 2016, Plasmodium oocysts: overlooked targets of mosquito immunity, Trends Parasitol., 32, 979, 10.1016/j.pt.2016.08.012
Soma, 2021, Insecticide resistance status of malaria vectors Anopheles gambiae (s.l.) of southwest Burkina Faso and residual efficacy of indoor residual spraying with microencapsulated pirimiphos-methyl insecticide, Parasit. Vectors, 14, 10.1186/s13071-020-04563-8
Keita, 2021, Multiple resistance mechanisms to pyrethroids insecticides in Anopheles gambiae sensu lato population from Mali, West Africa, J. Infect. Dis., 223, S81, 10.1093/infdis/jiaa190
Volohonsky, 2020, Kinetics of Plasmodium midgut invasion in Anopheles mosquitoes, PLoS Pathog., 16, 10.1371/journal.ppat.1008739
Caragata, 2020, Prospects and pitfalls: next-generation tools to control mosquito-transmitted disease, Annu. Rev. Microbiol., 74, 455, 10.1146/annurev-micro-011320-025557
Shen, 2020, New discoveries and applications of mosquito fungal pathogens, Curr. Opin. Insect Sci., 40, 111, 10.1016/j.cois.2020.05.003
Benelli, 2016, Biological control of mosquito vectors: past, present, and future, Insects, 7, 52, 10.3390/insects7040052
Wang, 2021, Combating mosquito-borne diseases using genetic control technologies, Nat. Commun., 12, 4388, 10.1038/s41467-021-24654-z
Moreira, 2002, Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes, J. Biol. Chem., 277, 40839, 10.1074/jbc.M206647200
Yoshida, 2007, Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development, PLoS Pathog., 3, 10.1371/journal.ppat.0030192
Kokoza, 2001, Efficient transformation of the yellow fever mosquito Aedes aegypti using the piggyBac transposable element vector pBac[3xP3-EGFP afm], Insect Biochem. Mol. Biol., 31, 1137, 10.1016/S0965-1748(01)00120-5
Labbé, 2010, piggyBac- and PhiC31-mediated genetic transformation of the Asian tiger mosquito, Aedes albopictus (Skuse), PLoS Negl. Trop. Dis., 4, 10.1371/journal.pntd.0000788
Rodrigues, 2006, Germline transformation of Aedes fluviatilis (Diptera: Culicidae) with the piggyBac transposable element, Mem. Inst. Oswaldo Cruz, 101, 755, 10.1590/S0074-02762006000700008
Grossman, 2000, The piggyBac element is capable of precise excision and transposition in cells and embryos of the mosquito, Anopheles gambiae, Insect Biochem. Mol. Biol., 30, 909, 10.1016/S0965-1748(00)00092-8
Grossman, 2001, Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element, Insect Mol. Biol., 10, 597, 10.1046/j.0962-1075.2001.00299.x
Nolan, 2002, piggyBac-mediated germline transformation of the malaria mosquito Anopheles stephensi using the red fluorescent protein dsRED as a selectable marker, J. Biol. Chem., 277, 8759, 10.1074/jbc.C100766200
Perera, 2002, Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient, Insect Mol. Biol., 11, 291, 10.1046/j.1365-2583.2002.00336.x
Franz, 2011, Comparison of transgene expression in Aedes aegypti generated by mariner Mos1 transposition and Phi C31 site-directed recombination, Insect Mol. Biol., 20, 587, 10.1111/j.1365-2583.2011.01089.x
Mathur, 2010, Transgene-mediated suppression of dengue viruses in the salivary glands of the yellow fever mosquito, Aedes aegypti, Insect Mol. Biol., 19, 753, 10.1111/j.1365-2583.2010.01032.x
Catteruccia, 2000, Stable germline transformation of the malaria mosquito Anopheles stephensi, Nature, 405, 959, 10.1038/35016096
Jasinskiene, 1998, Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly, Proc. Natl. Acad. Sci. U. S. A., 95, 3743, 10.1073/pnas.95.7.3743
Allen, 2001, Stable, germ-line transformation of Culex quinquefasciatus (Diptera: Culicidae), J. Med. Entomol., 38, 701, 10.1603/0022-2585-38.5.701
Trzilova, 2021, Site-specific recombination – how simple DNA inversions produce complex phenotypic heterogeneity in bacterial populations, Trends Genet., 37, 59, 10.1016/j.tig.2020.09.004
Nimmo, 2006, High efficiency site-specific genetic engineering of the mosquito genome, Insect Mol. Biol., 15, 129, 10.1111/j.1365-2583.2006.00615.x
Meredith, 2011, Site-specific integration and expression of an anti-malarial gene in transgenic Anopheles gambiae significantly reduces Plasmodium infections, PLoS One, 6, 10.1371/journal.pone.0014587
Jasinskiene, 2003, High efficiency, site-specific excision of a marker gene by the phage P1 cre-loxP system in the yellow fever mosquito, Aedes aegypti, Nucleic Acids Res., 31, 10.1093/nar/gng148
Volohonsky, 2015, Tools for Anopheles gambiae transgenesis, G3 (Bethesda), 5, 1151, 10.1534/g3.115.016808
DeGennaro, 2013, orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET, Nature, 498, 487, 10.1038/nature12206
Aryan, 2013, TALEN-based gene disruption in the dengue vector Aedes aegypti, PLoS One, 8, 10.1371/journal.pone.0060082
Smidler, 2013, Targeted mutagenesis in the malaria mosquito using TALE nucleases, PLoS One, 8, 10.1371/journal.pone.0074511
Kistler, 2015, Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti, Cell Rep., 11, 51, 10.1016/j.celrep.2015.03.009
Dong, 2015, Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito, Aedes aegypti, PLoS One, 10
Liu, 2019, Construction of an efficient genomic editing system with CRISPR/Cas9 in the vector mosquito Aedes albopictus, Insect Sci., 26, 1045, 10.1111/1744-7917.12645
Hammond, 2016, A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae, Nat. Biotechnol., 34, 78, 10.1038/nbt.3439
Gantz, 2015, Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi, Proc. Natl. Acad. Sci. U. S. A., 112, E6736, 10.1073/pnas.1521077112
Li, 2018, Highly efficient site-specific mutagenesis in malaria mosquitoes using CRISPR. G3-Genes Genomes, Genetics, 8, 653
Anderson, 2019, CRISPR/Cas9 gene editing in the West Nile Virus vector, Culex quinquefasciatus Say, PLoS ONE, 14, 10.1371/journal.pone.0224857
Windbichler, 2011, A synthetic homing endonuclease-based gene drive system in the human malaria mosquito, Nature, 473, 212, 10.1038/nature09937
Bernardini, 2014, Site-specific genetic engineering of the Anopheles gambiae Y chromosome, Proc. Natl. Acad. Sci. U. S. A., 111, 7600, 10.1073/pnas.1404996111
Werther, 2017, Crystallographic analyses illustrate significant plasticity and efficient recoding of meganuclease target specificity, Nucleic Acids Res., 45, 8621, 10.1093/nar/gkx544
Pinkerton, 2000, Green fluorescent protein as a genetic marker in transgenic Aedes aegypti, Insect Mol. Biol., 9, 1, 10.1046/j.1365-2583.2000.00133.x
Anderson, 2010, Validation of novel promoter sequences derived from two endogenous ubiquitin genes in transgenic Aedes aegypti, Insect Mol. Biol., 19, 441, 10.1111/j.1365-2583.2010.01005.x
Carpenetti, 2012, Robust heat-inducible gene expression by two endogenous hsp70-derived promoters in transgenic Aedes aegypti, Insect Mol. Biol., 21, 97, 10.1111/j.1365-2583.2011.01116.x
Dong, 2018, CRISPR/Cas9-mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infection, PLoS Pathog., 14, 10.1371/journal.ppat.1006898
Chen, 2007, Robust and regulatory expression of defensin A gene driven by vitellogenin promoter in transgenic Anopheles stephensi, Chin. Sci. Bull., 52, 1964, 10.1007/s11434-007-0292-z
Bian, 2005, Transgenic alteration of Toll immune pathway in the female mosquito Aedes aegypti, Proc. Natl. Acad. Sci. U. S. A., 102, 13568, 10.1073/pnas.0502815102
Moreira, 2000, Robust gut-specific gene expression in transgenic Aedes aegypti mosquitoes, Proc. Natl. Acad. Sci. U. S. A., 97, 10895, 10.1073/pnas.97.20.10895
Ito, 2002, Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite, Nature, 417, 452, 10.1038/417452a
Pondeville, 2020, Hemocyte-targeted gene expression in the female malaria mosquito using the hemolectin promoter from Drosophila, Insect Biochem. Mol. Biol., 120, 103339, 10.1016/j.ibmb.2020.103339
Abraham, 2005, Driving midgut-specific expression and secretion of a foreign protein in transgenic mosquitoes with AgAper1 regulatory elements, Insect Mol. Biol., 14, 271, 10.1111/j.1365-2583.2004.00557.x
Lombardo, 2005, An Anopheles gambiae salivary gland promoter analysis in Drosophila melanogaster and Anopheles stephensi, Insect Mol. Biol., 14, 207, 10.1111/j.1365-2583.2004.00549.x
Smith, 2007, Testis-specific expression of the beta2 tubulin promoter of Aedes aegypti and its application as a genetic sex-separation marker, Insect Mol. Biol., 16, 61, 10.1111/j.1365-2583.2006.00701.x
Catteruccia, 2005, An Anopheles transgenic sexing strain for vector control, Nat. Biotechnol., 23, 1414, 10.1038/nbt1152
Yoshida, 2006, Robust salivary gland-specific transgene expression in Anopheles stephensi mosquito, Insect Mol. Biol., 15, 403, 10.1111/j.1365-2583.2006.00645.x
Adelman, 2007, nanos gene control DNA mediates developmentally regulated transposition in the yellow fever mosquito Aedes aegypti, Proc. Natl. Acad. Sci. U. S. A., 104, 9970, 10.1073/pnas.0701515104
Papathanos, 2009, The vasa regulatory region mediates germline expression and maternal transmission of proteins in the malaria mosquito Anopheles gambiae: a versatile tool for genetic control strategies, BMC Mol. Biol., 10, 65, 10.1186/1471-2199-10-65
Curtis, 1968, Possible use of translocations to fix desirable genes in insect pest populations, Nature, 218, 368, 10.1038/218368a0
Holt, 2002, The genome sequence of the malaria mosquito Anopheles gambiae, Science, 298, 129, 10.1126/science.1076181
Scali, 2007, Post-integration behavior of a Minos transposon in the malaria mosquito Anopheles stephensi, Mol. Genet. Genomics, 278, 575, 10.1007/s00438-007-0274-5
Dong, 2011, Engineered Anopheles immunity to Plasmodium infection, PLoS Pathog., 7, 10.1371/journal.ppat.1002458
Yamamoto, 2016, Inhibition of malaria infection in transgenic anopheline mosquitoes lacking salivary gland cells, PLoS Pathog., 12, 10.1371/journal.ppat.1005872
Volohonsky, 2017, Transgenic expression of the anti-parasitic factor TEP1 in the malaria mosquito Anopheles gambiae, PLoS Pathog., 13, 10.1371/journal.ppat.1006113
Gantz, 2018, Gene editing technologies and applications for insects, Curr. Opin. Insect Sci., 28, 66, 10.1016/j.cois.2018.05.006
Moreira, 2004, Fitness of anopheline mosquitoes expressing transgenes that inhibit Plasmodium development, Genetics, 166, 1337, 10.1534/genetics.166.3.1337
Li, 2008, Fitness of transgenic Anopheles stephensi mosquitoes expressing the SM1 peptide under the control of a vitellogenin promoter, J. Hered., 99, 275, 10.1093/jhered/esn004
Isaacs, 2011, Engineered resistance to Plasmodium falciparum development in transgenic Anopheles stephensi, PLoS Pathog., 7, 10.1371/journal.ppat.1002017
Isaacs, 2012, Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development, Proc. Natl. Acad. Sci. U. S. A., 109, E1922, 10.1073/pnas.1207738109
Dong, 2020, Versatile transgenic multistage effector-gene combinations for Plasmodium falciparum suppression in Anopheles, Sci. Adv., 6, 10.1126/sciadv.aay5898
Yang, 2020, Disruption of mosGILT in Anopheles gambiae impairs ovarian development and Plasmodium infection, J. Exp. Med., 217, 10.1084/jem.20190682
Carvalho, 2015, Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes, PLoS Negl. Trop. Dis., 9, 10.1371/journal.pntd.0003864
Garziera, 2017, Effect of interruption of over-flooding releases of transgenic mosquitoes over wild population of Aedes aegypti: two case studies in Brazil, Entomol. Exp. Appl., 164, 327, 10.1111/eea.12618
Carter, 2013, Killer bee molecules: antimicrobial peptides as effector molecules to target sporogonic stages of Plasmodium, PLoS Pathog., 9, 10.1371/journal.ppat.1003790
Habtewold, 2019, Streamlined SMFA and mosquito dark-feeding regime significantly improve malaria transmission-blocking assay robustness and sensitivity, Malar. J., 18, 24, 10.1186/s12936-019-2663-8
Smith, 2013, Transgenic mosquitoes expressing a phospholipase A(2) gene have a fitness advantage when fed Plasmodium falciparum-infected blood, PLoS One, 8
Simões, 2018, Diverse host and restriction factors regulate mosquito–pathogen interactions, Trends Parasitol., 34, 603, 10.1016/j.pt.2018.04.011
Adedeji, 2020, Anopheles metabolic proteins in malaria transmission, prevention and control: a review, Parasit. Vectors, 13, 465, 10.1186/s13071-020-04342-5
Su, 2020, Host-malaria parasite interactions and impacts on mutual evolution, Front. Cell. Infect. Microbiol., 10, 587933, 10.3389/fcimb.2020.587933
Clayton, 2014, The Anopheles innate immune system in the defense against malaria infection, J. Innate Immun., 6, 169, 10.1159/000353602
Pike, 2017, Changes in the microbiota cause genetically modified Anopheles to spread in a population, Science, 357, 1396, 10.1126/science.aak9691
Dong, 2012, Anopheles NF-kappaB-regulated splicing factors direct pathogen-specific repertoires of the hypervariable pattern recognition receptor AgDscam, Cell Host Microbe, 12, 521, 10.1016/j.chom.2012.09.004
Simões, 2017, The Anopheles FBN9 immune factor mediates Plasmodium species-specific defense through transgenic fat body expression, Dev. Comp. Immunol., 67, 257, 10.1016/j.dci.2016.09.012
Corby-Harris, 2010, Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi mosquitoes, PLoS Pathog., 6, 10.1371/annotation/738ac91f-8c41-4bf5-9a39-bddf0b777a89
Osta, 2004, Effects of mosquito genes on Plasmodium development, Science, 303, 2030, 10.1126/science.1091789
Simões, 2017, Immune regulation of Plasmodium is Anopheles species specific and infection intensity dependent, mBio, 8, 10.1128/mBio.01631-17
Rono, 2010, The major yolk protein vitellogenin interferes with the anti-Plasmodium response in the malaria mosquito Anopheles gambiae, PLoS Biol., 8, 10.1371/journal.pbio.1000434
Mendes, 2008, Conserved mosquito/parasite interactions affect development of Plasmodium falciparum in Africa, PLoS Pathog., 4, 10.1371/journal.ppat.1000069
Rodrigues, 2012, An epithelial serine protease, AgESP, is required for Plasmodium invasion in the mosquito Anopheles gambiae, PLoS One, 7, 10.1371/journal.pone.0035210
Ghosh, 2009, Malaria parasite invasion of the mosquito salivary gland requires interaction between the Plasmodium TRAP and the Anopheles saglin proteins, PLoS Pathog., 5, 10.1371/journal.ppat.1000265
Pinheiro-Silva, 2015, Gene expression changes in the salivary glands of Anopheles coluzzii elicited by Plasmodium berghei infection, Parasit. Vectors, 8, 485, 10.1186/s13071-015-1079-8
Wang, 2013, Anopheles gambiae circumsporozoite protein-binding protein facilitates Plasmodium infection of mosquito salivary glands, J. Infect. Dis., 208, 1161, 10.1093/infdis/jit284
Myung, 2004, The Plasmodium circumsporozoite protein is involved in mosquito salivary gland invasion by sporozoites, Mol. Biochem. Parasitol., 133, 53, 10.1016/j.molbiopara.2003.09.002
Dennison, 2015, MicroRNA-regulation of Anopheles gambiae immunity to Plasmodium falciparum infection and midgut microbiota, Dev. Comp. Immunol., 49, 170, 10.1016/j.dci.2014.10.016
Wang, 2021, Insects defend against fungal infection by employing microRNAs to silence virulence-related genes, Proc. Natl. Acad. Sci. U. S. A., 118
Xu, 2021, Development of miRNA-based approaches to explore the interruption of mosquito-borne disease transmission, Front. Cell. Infect. Microbiol., 11, 665444, 10.3389/fcimb.2021.665444
Dong, 2020, Broad spectrum immunomodulatory effects of Anopheles gambiae microRNAs and their use for transgenic suppression of Plasmodium, PLoS Pathog., 16, 10.1371/journal.ppat.1008453
Jenkins, 2015, Long non-coding RNA discovery across the genus Anopheles reveals conserved secondary structures within and beyond the Gambiae complex, BMC Genom., 16, 337, 10.1186/s12864-015-1507-3
Farley, 2021, Filtering the junk: assigning function to the mosquito non-coding genome, Insects, 12, 186, 10.3390/insects12020186
Etebari, 2016, Identification of Aedes aegypti long intergenic non-coding RNAs and their association with Wolbachia and dengue virus infection, PLoS Negl. Trop. Dis., 10, 10.1371/journal.pntd.0005069
Azlan, 2021, Genome-wide identification of Aedes albopictus long noncoding RNAs and their association with dengue and Zika virus infection, PLoS Negl. Trop. Dis., 15, 10.1371/journal.pntd.0008351
Raban, 2020, Progress towards engineering gene drives for population control, J. Exp. Biol., 223, 10.1242/jeb.208181
Quinn, 2020, Nuclease-based gene drives, an innovative tool for insect vector control: advantages and challenges of the technology, Curr. Opin. Insect Sci., 39, 77, 10.1016/j.cois.2020.03.007
Hammond, 2017, Gene drives to fight malaria: current state and future directions, Pathog. Glob. Health, 111, 412, 10.1080/20477724.2018.1438880
Kyrou, 2018, A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes, Nat. Biotechnol., 36, 1062, 10.1038/nbt.4245
Carballar-Lejarazu, 2020, Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae, Proc. Natl. Acad. Sci. U. S. A., 117, 22805, 10.1073/pnas.2010214117
James, 2018, Pathway to deployment of gene drive mosquitoes as a potential biocontrol tool for elimination of malaria in sub-Saharan Africa: recommendations of a scientific working group, Am. J. Trop. Med. Hyg., 98, 1, 10.4269/ajtmh.18-0083
Wilke, 2018, Transgenic mosquitoes – fact or fiction?, Trends Parasitol., 34, 456, 10.1016/j.pt.2018.02.003