Mosquito transgenesis for malaria control

Trends in Parasitology - Tập 38 - Trang 54-66 - 2022
Shengzhang Dong1, Yuemei Dong1, Maria L. Simões1, George Dimopoulos1
1W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA

Tài liệu tham khảo

WHO, 2020 Global Health Estimates, 2020 Graumans, 2020, When is a Plasmodium-infected mosquito an infectious mosquito?, Trends Parasitol., 36, 705, 10.1016/j.pt.2020.05.011 Smith, 2016, Plasmodium oocysts: overlooked targets of mosquito immunity, Trends Parasitol., 32, 979, 10.1016/j.pt.2016.08.012 Soma, 2021, Insecticide resistance status of malaria vectors Anopheles gambiae (s.l.) of southwest Burkina Faso and residual efficacy of indoor residual spraying with microencapsulated pirimiphos-methyl insecticide, Parasit. Vectors, 14, 10.1186/s13071-020-04563-8 Keita, 2021, Multiple resistance mechanisms to pyrethroids insecticides in Anopheles gambiae sensu lato population from Mali, West Africa, J. Infect. Dis., 223, S81, 10.1093/infdis/jiaa190 Volohonsky, 2020, Kinetics of Plasmodium midgut invasion in Anopheles mosquitoes, PLoS Pathog., 16, 10.1371/journal.ppat.1008739 Caragata, 2020, Prospects and pitfalls: next-generation tools to control mosquito-transmitted disease, Annu. Rev. Microbiol., 74, 455, 10.1146/annurev-micro-011320-025557 Shen, 2020, New discoveries and applications of mosquito fungal pathogens, Curr. Opin. Insect Sci., 40, 111, 10.1016/j.cois.2020.05.003 Benelli, 2016, Biological control of mosquito vectors: past, present, and future, Insects, 7, 52, 10.3390/insects7040052 Wang, 2021, Combating mosquito-borne diseases using genetic control technologies, Nat. Commun., 12, 4388, 10.1038/s41467-021-24654-z Moreira, 2002, Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes, J. Biol. Chem., 277, 40839, 10.1074/jbc.M206647200 Yoshida, 2007, Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development, PLoS Pathog., 3, 10.1371/journal.ppat.0030192 Kokoza, 2001, Efficient transformation of the yellow fever mosquito Aedes aegypti using the piggyBac transposable element vector pBac[3xP3-EGFP afm], Insect Biochem. Mol. Biol., 31, 1137, 10.1016/S0965-1748(01)00120-5 Labbé, 2010, piggyBac- and PhiC31-mediated genetic transformation of the Asian tiger mosquito, Aedes albopictus (Skuse), PLoS Negl. Trop. Dis., 4, 10.1371/journal.pntd.0000788 Rodrigues, 2006, Germline transformation of Aedes fluviatilis (Diptera: Culicidae) with the piggyBac transposable element, Mem. Inst. Oswaldo Cruz, 101, 755, 10.1590/S0074-02762006000700008 Grossman, 2000, The piggyBac element is capable of precise excision and transposition in cells and embryos of the mosquito, Anopheles gambiae, Insect Biochem. Mol. Biol., 30, 909, 10.1016/S0965-1748(00)00092-8 Grossman, 2001, Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element, Insect Mol. Biol., 10, 597, 10.1046/j.0962-1075.2001.00299.x Nolan, 2002, piggyBac-mediated germline transformation of the malaria mosquito Anopheles stephensi using the red fluorescent protein dsRED as a selectable marker, J. Biol. Chem., 277, 8759, 10.1074/jbc.C100766200 Perera, 2002, Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient, Insect Mol. Biol., 11, 291, 10.1046/j.1365-2583.2002.00336.x Franz, 2011, Comparison of transgene expression in Aedes aegypti generated by mariner Mos1 transposition and Phi C31 site-directed recombination, Insect Mol. Biol., 20, 587, 10.1111/j.1365-2583.2011.01089.x Mathur, 2010, Transgene-mediated suppression of dengue viruses in the salivary glands of the yellow fever mosquito, Aedes aegypti, Insect Mol. Biol., 19, 753, 10.1111/j.1365-2583.2010.01032.x Catteruccia, 2000, Stable germline transformation of the malaria mosquito Anopheles stephensi, Nature, 405, 959, 10.1038/35016096 Jasinskiene, 1998, Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly, Proc. Natl. Acad. Sci. U. S. A., 95, 3743, 10.1073/pnas.95.7.3743 Allen, 2001, Stable, germ-line transformation of Culex quinquefasciatus (Diptera: Culicidae), J. Med. Entomol., 38, 701, 10.1603/0022-2585-38.5.701 Trzilova, 2021, Site-specific recombination – how simple DNA inversions produce complex phenotypic heterogeneity in bacterial populations, Trends Genet., 37, 59, 10.1016/j.tig.2020.09.004 Nimmo, 2006, High efficiency site-specific genetic engineering of the mosquito genome, Insect Mol. Biol., 15, 129, 10.1111/j.1365-2583.2006.00615.x Meredith, 2011, Site-specific integration and expression of an anti-malarial gene in transgenic Anopheles gambiae significantly reduces Plasmodium infections, PLoS One, 6, 10.1371/journal.pone.0014587 Jasinskiene, 2003, High efficiency, site-specific excision of a marker gene by the phage P1 cre-loxP system in the yellow fever mosquito, Aedes aegypti, Nucleic Acids Res., 31, 10.1093/nar/gng148 Volohonsky, 2015, Tools for Anopheles gambiae transgenesis, G3 (Bethesda), 5, 1151, 10.1534/g3.115.016808 DeGennaro, 2013, orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET, Nature, 498, 487, 10.1038/nature12206 Aryan, 2013, TALEN-based gene disruption in the dengue vector Aedes aegypti, PLoS One, 8, 10.1371/journal.pone.0060082 Smidler, 2013, Targeted mutagenesis in the malaria mosquito using TALE nucleases, PLoS One, 8, 10.1371/journal.pone.0074511 Kistler, 2015, Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti, Cell Rep., 11, 51, 10.1016/j.celrep.2015.03.009 Dong, 2015, Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito, Aedes aegypti, PLoS One, 10 Liu, 2019, Construction of an efficient genomic editing system with CRISPR/Cas9 in the vector mosquito Aedes albopictus, Insect Sci., 26, 1045, 10.1111/1744-7917.12645 Hammond, 2016, A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae, Nat. Biotechnol., 34, 78, 10.1038/nbt.3439 Gantz, 2015, Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi, Proc. Natl. Acad. Sci. U. S. A., 112, E6736, 10.1073/pnas.1521077112 Li, 2018, Highly efficient site-specific mutagenesis in malaria mosquitoes using CRISPR. G3-Genes Genomes, Genetics, 8, 653 Anderson, 2019, CRISPR/Cas9 gene editing in the West Nile Virus vector, Culex quinquefasciatus Say, PLoS ONE, 14, 10.1371/journal.pone.0224857 Windbichler, 2011, A synthetic homing endonuclease-based gene drive system in the human malaria mosquito, Nature, 473, 212, 10.1038/nature09937 Bernardini, 2014, Site-specific genetic engineering of the Anopheles gambiae Y chromosome, Proc. Natl. Acad. Sci. U. S. A., 111, 7600, 10.1073/pnas.1404996111 Werther, 2017, Crystallographic analyses illustrate significant plasticity and efficient recoding of meganuclease target specificity, Nucleic Acids Res., 45, 8621, 10.1093/nar/gkx544 Pinkerton, 2000, Green fluorescent protein as a genetic marker in transgenic Aedes aegypti, Insect Mol. Biol., 9, 1, 10.1046/j.1365-2583.2000.00133.x Anderson, 2010, Validation of novel promoter sequences derived from two endogenous ubiquitin genes in transgenic Aedes aegypti, Insect Mol. Biol., 19, 441, 10.1111/j.1365-2583.2010.01005.x Carpenetti, 2012, Robust heat-inducible gene expression by two endogenous hsp70-derived promoters in transgenic Aedes aegypti, Insect Mol. Biol., 21, 97, 10.1111/j.1365-2583.2011.01116.x Dong, 2018, CRISPR/Cas9-mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infection, PLoS Pathog., 14, 10.1371/journal.ppat.1006898 Chen, 2007, Robust and regulatory expression of defensin A gene driven by vitellogenin promoter in transgenic Anopheles stephensi, Chin. Sci. Bull., 52, 1964, 10.1007/s11434-007-0292-z Bian, 2005, Transgenic alteration of Toll immune pathway in the female mosquito Aedes aegypti, Proc. Natl. Acad. Sci. U. S. A., 102, 13568, 10.1073/pnas.0502815102 Moreira, 2000, Robust gut-specific gene expression in transgenic Aedes aegypti mosquitoes, Proc. Natl. Acad. Sci. U. S. A., 97, 10895, 10.1073/pnas.97.20.10895 Ito, 2002, Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite, Nature, 417, 452, 10.1038/417452a Pondeville, 2020, Hemocyte-targeted gene expression in the female malaria mosquito using the hemolectin promoter from Drosophila, Insect Biochem. Mol. Biol., 120, 103339, 10.1016/j.ibmb.2020.103339 Abraham, 2005, Driving midgut-specific expression and secretion of a foreign protein in transgenic mosquitoes with AgAper1 regulatory elements, Insect Mol. Biol., 14, 271, 10.1111/j.1365-2583.2004.00557.x Lombardo, 2005, An Anopheles gambiae salivary gland promoter analysis in Drosophila melanogaster and Anopheles stephensi, Insect Mol. Biol., 14, 207, 10.1111/j.1365-2583.2004.00549.x Smith, 2007, Testis-specific expression of the beta2 tubulin promoter of Aedes aegypti and its application as a genetic sex-separation marker, Insect Mol. Biol., 16, 61, 10.1111/j.1365-2583.2006.00701.x Catteruccia, 2005, An Anopheles transgenic sexing strain for vector control, Nat. Biotechnol., 23, 1414, 10.1038/nbt1152 Yoshida, 2006, Robust salivary gland-specific transgene expression in Anopheles stephensi mosquito, Insect Mol. Biol., 15, 403, 10.1111/j.1365-2583.2006.00645.x Adelman, 2007, nanos gene control DNA mediates developmentally regulated transposition in the yellow fever mosquito Aedes aegypti, Proc. Natl. Acad. Sci. U. S. A., 104, 9970, 10.1073/pnas.0701515104 Papathanos, 2009, The vasa regulatory region mediates germline expression and maternal transmission of proteins in the malaria mosquito Anopheles gambiae: a versatile tool for genetic control strategies, BMC Mol. Biol., 10, 65, 10.1186/1471-2199-10-65 Curtis, 1968, Possible use of translocations to fix desirable genes in insect pest populations, Nature, 218, 368, 10.1038/218368a0 Holt, 2002, The genome sequence of the malaria mosquito Anopheles gambiae, Science, 298, 129, 10.1126/science.1076181 Scali, 2007, Post-integration behavior of a Minos transposon in the malaria mosquito Anopheles stephensi, Mol. Genet. Genomics, 278, 575, 10.1007/s00438-007-0274-5 Dong, 2011, Engineered Anopheles immunity to Plasmodium infection, PLoS Pathog., 7, 10.1371/journal.ppat.1002458 Yamamoto, 2016, Inhibition of malaria infection in transgenic anopheline mosquitoes lacking salivary gland cells, PLoS Pathog., 12, 10.1371/journal.ppat.1005872 Volohonsky, 2017, Transgenic expression of the anti-parasitic factor TEP1 in the malaria mosquito Anopheles gambiae, PLoS Pathog., 13, 10.1371/journal.ppat.1006113 Gantz, 2018, Gene editing technologies and applications for insects, Curr. Opin. Insect Sci., 28, 66, 10.1016/j.cois.2018.05.006 Moreira, 2004, Fitness of anopheline mosquitoes expressing transgenes that inhibit Plasmodium development, Genetics, 166, 1337, 10.1534/genetics.166.3.1337 Li, 2008, Fitness of transgenic Anopheles stephensi mosquitoes expressing the SM1 peptide under the control of a vitellogenin promoter, J. Hered., 99, 275, 10.1093/jhered/esn004 Isaacs, 2011, Engineered resistance to Plasmodium falciparum development in transgenic Anopheles stephensi, PLoS Pathog., 7, 10.1371/journal.ppat.1002017 Isaacs, 2012, Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development, Proc. Natl. Acad. Sci. U. S. A., 109, E1922, 10.1073/pnas.1207738109 Dong, 2020, Versatile transgenic multistage effector-gene combinations for Plasmodium falciparum suppression in Anopheles, Sci. Adv., 6, 10.1126/sciadv.aay5898 Yang, 2020, Disruption of mosGILT in Anopheles gambiae impairs ovarian development and Plasmodium infection, J. Exp. Med., 217, 10.1084/jem.20190682 Carvalho, 2015, Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes, PLoS Negl. Trop. Dis., 9, 10.1371/journal.pntd.0003864 Garziera, 2017, Effect of interruption of over-flooding releases of transgenic mosquitoes over wild population of Aedes aegypti: two case studies in Brazil, Entomol. Exp. Appl., 164, 327, 10.1111/eea.12618 Carter, 2013, Killer bee molecules: antimicrobial peptides as effector molecules to target sporogonic stages of Plasmodium, PLoS Pathog., 9, 10.1371/journal.ppat.1003790 Habtewold, 2019, Streamlined SMFA and mosquito dark-feeding regime significantly improve malaria transmission-blocking assay robustness and sensitivity, Malar. J., 18, 24, 10.1186/s12936-019-2663-8 Smith, 2013, Transgenic mosquitoes expressing a phospholipase A(2) gene have a fitness advantage when fed Plasmodium falciparum-infected blood, PLoS One, 8 Simões, 2018, Diverse host and restriction factors regulate mosquito–pathogen interactions, Trends Parasitol., 34, 603, 10.1016/j.pt.2018.04.011 Adedeji, 2020, Anopheles metabolic proteins in malaria transmission, prevention and control: a review, Parasit. Vectors, 13, 465, 10.1186/s13071-020-04342-5 Su, 2020, Host-malaria parasite interactions and impacts on mutual evolution, Front. Cell. Infect. Microbiol., 10, 587933, 10.3389/fcimb.2020.587933 Clayton, 2014, The Anopheles innate immune system in the defense against malaria infection, J. Innate Immun., 6, 169, 10.1159/000353602 Pike, 2017, Changes in the microbiota cause genetically modified Anopheles to spread in a population, Science, 357, 1396, 10.1126/science.aak9691 Dong, 2012, Anopheles NF-kappaB-regulated splicing factors direct pathogen-specific repertoires of the hypervariable pattern recognition receptor AgDscam, Cell Host Microbe, 12, 521, 10.1016/j.chom.2012.09.004 Simões, 2017, The Anopheles FBN9 immune factor mediates Plasmodium species-specific defense through transgenic fat body expression, Dev. Comp. Immunol., 67, 257, 10.1016/j.dci.2016.09.012 Corby-Harris, 2010, Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi mosquitoes, PLoS Pathog., 6, 10.1371/annotation/738ac91f-8c41-4bf5-9a39-bddf0b777a89 Osta, 2004, Effects of mosquito genes on Plasmodium development, Science, 303, 2030, 10.1126/science.1091789 Simões, 2017, Immune regulation of Plasmodium is Anopheles species specific and infection intensity dependent, mBio, 8, 10.1128/mBio.01631-17 Rono, 2010, The major yolk protein vitellogenin interferes with the anti-Plasmodium response in the malaria mosquito Anopheles gambiae, PLoS Biol., 8, 10.1371/journal.pbio.1000434 Mendes, 2008, Conserved mosquito/parasite interactions affect development of Plasmodium falciparum in Africa, PLoS Pathog., 4, 10.1371/journal.ppat.1000069 Rodrigues, 2012, An epithelial serine protease, AgESP, is required for Plasmodium invasion in the mosquito Anopheles gambiae, PLoS One, 7, 10.1371/journal.pone.0035210 Ghosh, 2009, Malaria parasite invasion of the mosquito salivary gland requires interaction between the Plasmodium TRAP and the Anopheles saglin proteins, PLoS Pathog., 5, 10.1371/journal.ppat.1000265 Pinheiro-Silva, 2015, Gene expression changes in the salivary glands of Anopheles coluzzii elicited by Plasmodium berghei infection, Parasit. Vectors, 8, 485, 10.1186/s13071-015-1079-8 Wang, 2013, Anopheles gambiae circumsporozoite protein-binding protein facilitates Plasmodium infection of mosquito salivary glands, J. Infect. Dis., 208, 1161, 10.1093/infdis/jit284 Myung, 2004, The Plasmodium circumsporozoite protein is involved in mosquito salivary gland invasion by sporozoites, Mol. Biochem. Parasitol., 133, 53, 10.1016/j.molbiopara.2003.09.002 Dennison, 2015, MicroRNA-regulation of Anopheles gambiae immunity to Plasmodium falciparum infection and midgut microbiota, Dev. Comp. Immunol., 49, 170, 10.1016/j.dci.2014.10.016 Wang, 2021, Insects defend against fungal infection by employing microRNAs to silence virulence-related genes, Proc. Natl. Acad. Sci. U. S. A., 118 Xu, 2021, Development of miRNA-based approaches to explore the interruption of mosquito-borne disease transmission, Front. Cell. Infect. Microbiol., 11, 665444, 10.3389/fcimb.2021.665444 Dong, 2020, Broad spectrum immunomodulatory effects of Anopheles gambiae microRNAs and their use for transgenic suppression of Plasmodium, PLoS Pathog., 16, 10.1371/journal.ppat.1008453 Jenkins, 2015, Long non-coding RNA discovery across the genus Anopheles reveals conserved secondary structures within and beyond the Gambiae complex, BMC Genom., 16, 337, 10.1186/s12864-015-1507-3 Farley, 2021, Filtering the junk: assigning function to the mosquito non-coding genome, Insects, 12, 186, 10.3390/insects12020186 Etebari, 2016, Identification of Aedes aegypti long intergenic non-coding RNAs and their association with Wolbachia and dengue virus infection, PLoS Negl. Trop. Dis., 10, 10.1371/journal.pntd.0005069 Azlan, 2021, Genome-wide identification of Aedes albopictus long noncoding RNAs and their association with dengue and Zika virus infection, PLoS Negl. Trop. Dis., 15, 10.1371/journal.pntd.0008351 Raban, 2020, Progress towards engineering gene drives for population control, J. Exp. Biol., 223, 10.1242/jeb.208181 Quinn, 2020, Nuclease-based gene drives, an innovative tool for insect vector control: advantages and challenges of the technology, Curr. Opin. Insect Sci., 39, 77, 10.1016/j.cois.2020.03.007 Hammond, 2017, Gene drives to fight malaria: current state and future directions, Pathog. Glob. Health, 111, 412, 10.1080/20477724.2018.1438880 Kyrou, 2018, A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes, Nat. Biotechnol., 36, 1062, 10.1038/nbt.4245 Carballar-Lejarazu, 2020, Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae, Proc. Natl. Acad. Sci. U. S. A., 117, 22805, 10.1073/pnas.2010214117 James, 2018, Pathway to deployment of gene drive mosquitoes as a potential biocontrol tool for elimination of malaria in sub-Saharan Africa: recommendations of a scientific working group, Am. J. Trop. Med. Hyg., 98, 1, 10.4269/ajtmh.18-0083 Wilke, 2018, Transgenic mosquitoes – fact or fiction?, Trends Parasitol., 34, 456, 10.1016/j.pt.2018.02.003