Morrey-type Space and Its Köthe Dual Space
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adams, D.R., Xiao, J.: Nonlinear potential analysis on Morrey spaces and their capacities. Indiana Univ. Math. J. 53(6), 1629–1663 (2004)
Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence (1998)
Garcia-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics. North-Holland, Amsterdam (1985)
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)
Gogatishvili, A., Mustafayev, R.: New pre-dual space of Morrey space. J. Math. Anal. Appl. 397(2), 678–692 (2013)
Izumi, T., Sato, E., Yabuta, K.: Remarks on a subspace of Morrey spaces. Tokyo J. Math. 37(1), 185–197 (2014)
Kalita, E.: Dual Morrey spaces. Dokl. Akad. Nauk 361(4), 447–449 (1998)
Kantorovich, L.V., Akilov, G.P.: Functional Analysis, 2nd edn. Pergamon Press, Oxford-Elmsford (1982)
Komlós, J.: A generalization of a problem of Steinhaus. Acta Math. Acad. Sci. Hung. 18, 217–229 (1967)
Komori-Furuya, Y., Matsuoka, K., Nakai, E., Sawano, Y.: Integral operators on $$B^{\sigma }$$ B σ -Morrey-Campanato spaces. Rev. Mat. Complut. 26(1), 1–32 (2013)
Orobitg, J., Verdera, J.: Choquet integrals, Hausdorff content and the Hardy-Littlewood maximal operator. Bull. Lond. Math. Soc. 30(2), 145–150 (1998)
Sawano, Y., Tanaka, H.: The Fatou property of block spaces. Int. J. Appl. Math. 27(3), 283–296 (2014)