Cách không gian Morrey cho các toán tử Schrödinger với một số tiềm năng không âm nhất định, các hàm Littlewood–Paley và Lusin trên nhóm Heisenberg

Banach Journal of Mathematical Analysis - Tập 14 Số 4 - Trang 1532-1557 - 2020
Wang, Hua1
1School of Mathematics and Systems Science, Xinjiang University, Urumqi, People’s Republic of China

Tóm tắt

Đặt $${\mathcal {L}}=-\varDelta _{{\mathbb {H}}^n}+V$$ là một toán tử Schrödinger trên nhóm Heisenberg $${\mathbb {H}}^n$$, trong đó $$\varDelta _{{\mathbb {H}}^n}$$ là phép toán phụ laplacian trên $${\mathbb {H}}^n$$ và tiềm năng không âm V thuộc về lớp Hölder đảo ngược $$RH_q$$ với $$q\ge Q/2$$. Ở đây $$Q=2n+2$$ là chiều đồng nhất của $${\mathbb {H}}^n$$. Trong bài báo này, tác giả đầu tiên giới thiệu một lớp không gian Morrey liên quan đến toán tử Schrödinger $${\mathcal {L}}$$ trên $${\mathbb {H}}^n$$. Sau đó, bằng cách sử dụng một số ước lượng điểm cho các nhân liên quan đến tiềm năng không âm V, tác giả xây dựng các thuộc tính giới hạn của hàm Littlewood–Paley $${\mathfrak {g}}_{{\mathcal {L}}}$$ và tích phân diện tích Lusin $${\mathcal {S}}_{{\mathcal {L}}}$$ (đối với nhóm nhiệt $$\{e^{-s{\mathcal {L}}}\}_{s>0}$$) tác động lên không gian Morrey. Có thể chứng minh rằng cùng các kết luận cũng đúng cho các toán tử $${\mathfrak {g}}_{\sqrt{{\mathcal {L}}}}$$ và $${\mathcal {S}}_{\sqrt{{\mathcal {L}}}}$$ liên quan đến nhóm Poisson $$\{e^{-s\sqrt{{\mathcal {L}}}}\}_{s>0}$$.

Từ khóa


Tài liệu tham khảo

citation_title=Morrey Spaces, Lecture Notes in Applied and Numerical Harmonic Analysis; citation_publication_date=2015; citation_id=CR1; citation_author=DR Adams; citation_publisher=Birkhäuser/Springer citation_journal_title=Ark. Math.; citation_title=Morrey spaces in harmonic analysis; citation_author=DR Adams, J Xiao; citation_volume=50; citation_publication_date=2012; citation_pages=201-230; citation_id=CR2 citation_journal_title=Indiana Univ. Math. J.; citation_title=Nonlinear potential analysis on Morrey spaces and their capacities; citation_author=DR Adams, J Xiao; citation_volume=53; citation_publication_date=2004; citation_pages=1629-1663; citation_id=CR3 citation_journal_title=J. Math. Anal. Appl.; citation_title=Classes of weights related to Schrödinger operators; citation_author=B Bongioanni, E Harboure, O Salinas; citation_volume=373; citation_publication_date=2011; citation_pages=563-579; citation_id=CR4 citation_journal_title=J. Math. Anal. Appl.; citation_title=Weighted inequalities for commutators of Schrödinger–Riesz transforms; citation_author=B Bongioanni, E Harboure, O Salinas; citation_volume=392; citation_publication_date=2012; citation_pages=6-22; citation_id=CR5 citation_journal_title=Potential Anal.; citation_title=Extrapolation for classes of weights related to a family of operators and applications; citation_author=B Bongioanni, A Cabral, E Harboure; citation_volume=38; citation_publication_date=2013; citation_pages=1207-1232; citation_id=CR6 citation_journal_title=J. Math. Anal. Appl.; citation_title=Lerner’s inequality associated to a critical radius function and applications; citation_author=B Bongioanni, A Cabral, E Harboure; citation_volume=407; citation_publication_date=2013; citation_pages=35-55; citation_id=CR7 citation_journal_title=Bull. Sci. Math.; citation_title=Weighted estimates for commutators of some singular integrals related to Schrödinger operators; citation_author=TA Bui; citation_volume=138; citation_publication_date=2014; citation_pages=270-292; citation_id=CR8 citation_journal_title=Stud. Math.; citation_title=Hardy spaces associated with some Schrödinger operators; citation_author=J Dziubański, J Zienkiewicz; citation_volume=126; citation_publication_date=1997; citation_pages=149-160; citation_id=CR9 citation_journal_title=Rev. Mat. Iberoamericana; citation_title=Hardy space associated to Schrödinger operator with potential satisfying reverse Hölder inequality; citation_author=J Dziubański, J Zienkiewicz; citation_volume=15; citation_publication_date=1999; citation_pages=279-296; citation_id=CR10 citation_journal_title=Colloq. Math.; citation_title= spaces associated with Schrödinger operators with potentials from reverse Hölder classes; citation_author=J Dziubański, J Zienkiewicz; citation_volume=98; citation_publication_date=2003; citation_pages=5-38; citation_id=CR11 citation_journal_title=Math. Z.; citation_title= spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality; citation_author=J Dziubański, G Garrigós, T Martínez, JL Torrea, J Zienkiewicz; citation_volume=249; citation_publication_date=2005; citation_pages=329-356; citation_id=CR12 citation_journal_title=J. Funct. Anal; citation_title=Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients; citation_author=G Fazio, MA Ragusa; citation_volume=112; citation_publication_date=1993; citation_pages=241-256; citation_id=CR13 citation_journal_title=J. Funct. Anal.; citation_title=Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients; citation_author=G Fazio, DK Palagachev, MA Ragusa; citation_volume=166; citation_publication_date=1999; citation_pages=179-196; citation_id=CR14 citation_title=Harmonic Analysis in Phase Space, Annals of Mathematics Studies; citation_publication_date=1989; citation_id=CR15; citation_author=GB Folland; citation_publisher=Princeton Univ. Press citation_journal_title=Comm. Pure Appl. Math.; citation_title=Estimates for the complex and analysis on the Heisenberg group; citation_author=GB Folland, EM Stein; citation_volume=27; citation_publication_date=1974; citation_pages=429-522; citation_id=CR16 citation_title=Semigroups of Linear Operators and Applications; citation_publication_date=1985; citation_id=CR17; citation_author=JA Goldstein; citation_publisher=Oxford Univ. Press citation_journal_title=J. Math. Sci. (N.Y.); citation_title=Riesz potential in generalized Morrey spaces on the Heisenberg group; citation_author=VS Guliyev, A Eroglu, YY Mammadov; citation_volume=189; citation_publication_date=2013; citation_pages=365-382; citation_id=CR18 Hofmann, S., Lu, G.Z., Mitrea, D., Mitrea, M., Yan, L.X.: Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Mem. Am. Math. Soc. 214, (2011) citation_journal_title=Rev. Mat. Complut.; citation_title=Maximal function characterizations of Hardy spaces associated with Schrödinger operators on nilpotent Lie groups; citation_author=RJ Jiang, XJ Jiang, DC Yang; citation_volume=24; citation_publication_date=2011; citation_pages=251-275; citation_id=CR20 citation_journal_title=J. Funct. Anal.; citation_title=Estimations des opérateurs de Schrödinger sur les groupes nilpotents; citation_author=HQ Li; citation_volume=161; citation_publication_date=1999; citation_pages=152-218; citation_id=CR21 citation_journal_title=Adv. Math.; citation_title= spaces and Carleson measures for Schrödinger operators; citation_author=CC Lin, HP Liu; citation_volume=228; citation_publication_date=2011; citation_pages=1631-1688; citation_id=CR22 citation_journal_title=Panam. Math. J.; citation_title=A Fefferman–Phong type inequality for degenerate vector fields and applications; citation_author=GZ Lu; citation_volume=6; citation_publication_date=1996; citation_pages=37-57; citation_id=CR23 citation_title=Boundedness of Some Classical Operators on Generalized Morrey Spaces, Harmonic Analysis, ICM-90 Satellite Conference Proceedings; citation_publication_date=1991; citation_id=CR24; citation_author=T Mizuhara; citation_publisher=Springer citation_journal_title=Trans. Am. Math. Soc.; citation_title=On the solutions of quasi-linear elliptic partial differential equations; citation_author=CB Morrey; citation_volume=43; citation_publication_date=1938; citation_pages=126-166; citation_id=CR25 Pan, G.X., Tang, L.: Boundedness for some Schrödinger type operators on weighted Morrey spaces, J. Funct. Spaces, Art. ID 878629, 10 pp (2014) citation_journal_title=Rev. Mat. Iberoam.; citation_title=Harnack inequality for hypoelliptic ultraparabolic equations with a singular lower order term; citation_author=S Polidoro, MA Ragusa; citation_volume=24; citation_publication_date=2008; citation_pages=1011-1046; citation_id=CR27 citation_journal_title=Appl. Math. Comput.; citation_title=Necessary and sufficient condition for a function; citation_author=MA Ragusa; citation_volume=218; citation_publication_date=2012; citation_pages=11952-11958; citation_id=CR28 citation_journal_title=Ann. Inst. Fourier (Grenoble); citation_title= estimates for Schrödinger operators with certain potentials; citation_author=ZW Shen; citation_volume=45; citation_publication_date=1995; citation_pages=513-546; citation_id=CR29 citation_journal_title=J. Funct. Anal.; citation_title=Riesz transforms associated to Schrödinger operators on weighted Hardy spaces; citation_author=L Song, LX Yan; citation_volume=259; citation_publication_date=2010; citation_pages=1466-1490; citation_id=CR30 citation_title=Singular Integrals and Differentiability Properties of Functions; citation_publication_date=1970; citation_id=CR31; citation_author=EM Stein; citation_publisher=Princeton Univ. Press citation_title=Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals; citation_publication_date=1993; citation_id=CR32; citation_author=EM Stein; citation_publisher=Princeton Univ. Press citation_journal_title=Forum Math.; citation_title=Weighted norm inequalities for Schrödinger type operators; citation_author=L Tang; citation_volume=27; citation_publication_date=2015; citation_pages=2491-2532; citation_id=CR33 citation_journal_title=Comm. Partial Differ. Equ.; citation_title=Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations; citation_author=ME Taylor; citation_volume=17; citation_publication_date=1992; citation_pages=1407-1456; citation_id=CR34 citation_title=Harmonic Analysis on the Heisenberg Group, Progress in Mathematics; citation_publication_date=1998; citation_id=CR35; citation_author=S Thangavelu; citation_publisher=Birkhäuser citation_journal_title=Bull. Sci. Math.; citation_title=Littlewood-Paley and Lusin functions on nilpotent Lie groups; citation_author=JM Zhao; citation_volume=132; citation_publication_date=2008; citation_pages=425-438; citation_id=CR36