Morrey Sequence Spaces: Pitt’s Theorem and Compact Embeddings
Tóm tắt
Morrey (function) spaces and, in particular, smoothness spaces of Besov–Morrey or Triebel–Lizorkin–Morrey type have enjoyed a lot of interest recently. Here we turn our attention to Morrey sequence spaces $$m_{u,p}=m_{u,p}(\mathbb {Z}^d)$$, $$0
Tài liệu tham khảo
Adams, D.R.: Morrey Spaces. Lecture Notes in Applied and Numerical Harmonic Analysis. Springer, Cham (2015)
Adams, D.R., Xiao, J.: Nonlinear potential analysis on Morrey spaces and their capacities. Indiana Univ. Math. J. 53, 1629–1663 (2004)
Adams, D.R., Xiao, J.: Morrey potentials and harmonic maps. Commun. Math. Phys. 308, 439–456 (2011)
Adams, D.R., Xiao, J.: Morrey spaces in harmonic analysis. Ark. Mat. 50, 201–230 (2012)
Alvarez, J.: Continuity of Calderón–Zygmund type operators on the predual of a Morrey space. In: Clifford Algebras in Analysis and Related Topics (Fayetteville, AR, 1993), Studies in Advanced Mathematics, pp. 309–319. CRC, Boca Raton, FL (1996)
Berezhnoĭ, E.I.: A discrete version of Morrey local spaces. Izv. Ross. Akad. Nauk Ser. Mat. 81, 3–30 (2017)
Carl, B., Stephani, I.: Entropy, Compactness and the Approximation of Operators. Cambridge University Press, Cambridge (1990)
Defant, A., López Molina, J.A., Rivera, M.J.: On Pitt’s theorem for operators between scalar and vector-valued quasi-Banach sequence spaces. Monatsh. Math. 130, 7–18 (2000)
Delpech, S.: A short proof of Pitt’s compactness theorem. Proc. AMS 137, 1371–1372 (2009)
Edmunds, D.E., Evans, W.D.: Spectral Theory and Differential Operators. Clarendon Press, Oxford (1987)
Edmunds, D.E., Triebel, H.: Function Spaces, Entropy Numbers, Differential Operators. Cambridge University Press, Cambridge (1996)
El Baraka, A.: An embedding theorem for Campanato spaces. Electron. J. Differ. Equ. 66, 1–17 (2002)
El Baraka, A.: Function spaces of BMO and Campanato type. In: Proceedings of the 2002 Fez Conference on Partial Differential Equations, pp. 109-115 (electronic), Electronic Journal of Differential Equations Conference 9, Southwest Texas State University, San Marcos, TX (2002)
El Baraka, A.: Littlewood–Paley characterization for Campanato spaces. J. Funct. Spaces Appl. 4, 193–220 (2006)
Fabian, M., Zizler, V.: A “nonlinear” proof of Pitt’s compactness theorem. Proc. AMS 131, 3693–3694 (2003)
Gunawan, H., Kikianty, E., Schwanke, C.: Discrete Morrey spaces and their inclusion properties. Math. Nachr. 291(8–9), 1283–1296 (2018)
Gunawan, H., Schwanke, C.: The Hardy–Littlewood maximal operator on discrete Morrey spaces. Mediterr. J. Math. (2019). https://doi.org/10.1007/s00009-018-1277-7
Haroske, D.D., Skrzypczak, L.: Continuous embeddings of Besov–Morrey function spaces. Acta Math. Sin. (Engl. Ser.) 28, 1307–1328 (2012)
Heil, C.: The Basis Theory Primer. Birkhäuser, Basel (2011)
Kalita, E.A.: Dual Morrey spaces. Dokl. Akad. Nauk 361(4), 447–449 (1998)
König, H.: Eigenvalue Distribution of Compact Operators. Birkhäuser, Basel (1986)
Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data. Commun. Partial Differ. Equ. 19, 959–1014 (1994)
Kühn, T.: A lower estimate for entropy numbers. J. Approx. Theory 110, 120–124 (2001)
Kühn, T.: Entropy numbers in sequence spaces with an application to weighted function spaces. J. Approx. Theory 153, 40–52 (2008)
Lemarié-Rieusset, P.G.: The Navier–Stokes equations in the critical Morrey–Campanato space. Rev. Mat. Iberoam. 23, 897–930 (2007)
Lemarié-Rieusset, P.G.: The role of Morrey spaces in the study of Navier–Stokes and Euler equations. Eurasian Math. J. 3, 62–93 (2012)
Lemarié-Rieusset, P.G.: Multipliers and Morrey spaces. Potential Anal. 38, 741–752 (2013)
López Molina, J.A.: Pitt’s theorem for operators between general Lorentz sequence spaces. Math. Scan. 90, 101–125 (2002)
Mastyło, M., Sawano, Y., Tanaka, H.: Morrey type spaces and its Köthe dual space. Bull. Malays. Math. Sci. Soc. 41, 1181–1198 (2018)
Mazzucato, A.: Decomposition of Besov–Morrey spaces. Contemp. Math. 320, 279–294 (2003)
Mazzucato, A.: Besov–Morrey spaces: function spaces theory and applications to non-linear PDE. Trans. Am. Math. Soc. 355, 1297–1369 (2003)
Morrey, C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43, 126–166 (1938)
Olsen, P.: Fractional integration, Morrey spaces and Schrödinger equation. Commun. Partial Differ. Equ. 20, 20005–2055 (1995)
Piccinini, L.C.: Inclusioni tra spazi di Morrey. Boll. Un. Mat. Ital (4) 2, 95–99 (1969)
Piccinini, L.C.: Proprietá di inclusione e interpolazione tra spazi di Morrey e loro generalizzazioni. Ph.D. thesis, Scuola Normale Superiore Pisa (1969)
Pietsch, A.: Eigenvalues and \(s\)-Numbers. Akad. Verlagsgesellschaft Geest & Portig, Leipzig (1987)
Pitt, H.R.: A note on bilinear forms. J. Lond. Math. Soc. 11(1), 174–180 (1932)
Rosenthal, M.: Morrey-Räume aus der Sicht der harmonischen Analysis. Master’s thesis, Friedrich-Schiller-Universität Jena, Germany (2009)
Rosenthal, M.: Local means, wavelet bases, representations, and isomorphisms in Besov–Morrey and Triebel–Lizorkin–Morrey spaces. Math. Nachr. 286, 59–87 (2013)
Rosenthal, M., Triebel, H.: Morrey spaces, their duals and preduals. Rev. Mat. Complut. 28(1), 1–30 (2015)
Sawano, Y.: Wavelet characterizations of Besov–Morrey and Triebel–Lizorkin–Morrey spaces. Funct. Approx. Comment. Math. 38, 93–107 (2008)
Sawano, Y.: A note on Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces. Acta Math. Sin. (Engl. Ser.) 25, 1223–1242 (2009)
Sawano, Y., Tanaka, H.: Decompositions of Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces. Math. Z. 257, 871–905 (2007)
Sawano, Y., Tanaka, H.: Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces for non-doubling measures. Math. Nachr. 282, 1788–1810 (2009)
Schütt, C.: Entropy numbers of diagonal operators between symmetric Banach spaces. J. Approx. Theory 40, 121–128 (1984)
Sickel, W.: Smoothness spaces related to Morrey spaces—a survey. I. Eurasian Math. J. 3, 110–149 (2012)
Sickel, W.: Smoothness spaces related to Morrey spaces—a survey. II. Eurasian Math. J. 4, 82–124 (2013)
Sickel, W., Yang, D.C., Yuan, W.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Springer, Berlin (2010)
Tang, L., Xu, J.: Some properties of Morrey type Besov–Triebel spaces. Math. Nachr. 278, 904–917 (2005)
Taylor, M.: Analysis on Morrey spaces and applications to Navier–Stokes and other evolution equations. Commun. Partial Differ. Equ. 17, 1407–1456 (1992)
Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)
Triebel, H.: Fractals and Spectra. Birkhäuser, Basel (1997)
Triebel, H.: Local Function Spaces, Heat and Navier–Stokes Equations. EMS Tracts in Mathematics 20. European Mathematical Society (EMS), Zürich (2013)
Triebel, H.: Hybrid Function Spaces, Heat and Navier–Stokes Equations. EMS Tracts in Mathematics 24. European Mathematical Society (EMS), Zürich (2015)
Yang, D., Yuan, W.: A new class of function spaces connecting Triebel–Lizorkin spaces and Q spaces. J. Funct. Anal. 255, 2760–2809 (2008)
Yang, D., Yuan, W.: New Besov-type spaces and Triebel–Lizorkin-type spaces including Q spaces. Math. Z. 265, 451–480 (2010)
Yuan, W., Sickel, W., Yang, D.: On the coincidence of certain approaches to smoothness spaces related to Morrey spaces. Math. Nachr. 286, 1571–1584 (2013)
Zorko, C.T.: Morrey space. Proc. Am. Math. Soc. 98(4), 586–592 (1986)