Morrey Sequence Spaces: Pitt’s Theorem and Compact Embeddings

Springer Science and Business Media LLC - Tập 51 - Trang 505-535 - 2019
Dorothee D. Haroske1, Leszek Skrzypczak2
1Institute of Mathematics, University of Rostock, 18057, Germany
2Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznan, Poland

Tóm tắt

Morrey (function) spaces and, in particular, smoothness spaces of Besov–Morrey or Triebel–Lizorkin–Morrey type have enjoyed a lot of interest recently. Here we turn our attention to Morrey sequence spaces $$m_{u,p}=m_{u,p}(\mathbb {Z}^d)$$, $$0

Tài liệu tham khảo

Adams, D.R.: Morrey Spaces. Lecture Notes in Applied and Numerical Harmonic Analysis. Springer, Cham (2015) Adams, D.R., Xiao, J.: Nonlinear potential analysis on Morrey spaces and their capacities. Indiana Univ. Math. J. 53, 1629–1663 (2004) Adams, D.R., Xiao, J.: Morrey potentials and harmonic maps. Commun. Math. Phys. 308, 439–456 (2011) Adams, D.R., Xiao, J.: Morrey spaces in harmonic analysis. Ark. Mat. 50, 201–230 (2012) Alvarez, J.: Continuity of Calderón–Zygmund type operators on the predual of a Morrey space. In: Clifford Algebras in Analysis and Related Topics (Fayetteville, AR, 1993), Studies in Advanced Mathematics, pp. 309–319. CRC, Boca Raton, FL (1996) Berezhnoĭ, E.I.: A discrete version of Morrey local spaces. Izv. Ross. Akad. Nauk Ser. Mat. 81, 3–30 (2017) Carl, B., Stephani, I.: Entropy, Compactness and the Approximation of Operators. Cambridge University Press, Cambridge (1990) Defant, A., López Molina, J.A., Rivera, M.J.: On Pitt’s theorem for operators between scalar and vector-valued quasi-Banach sequence spaces. Monatsh. Math. 130, 7–18 (2000) Delpech, S.: A short proof of Pitt’s compactness theorem. Proc. AMS 137, 1371–1372 (2009) Edmunds, D.E., Evans, W.D.: Spectral Theory and Differential Operators. Clarendon Press, Oxford (1987) Edmunds, D.E., Triebel, H.: Function Spaces, Entropy Numbers, Differential Operators. Cambridge University Press, Cambridge (1996) El Baraka, A.: An embedding theorem for Campanato spaces. Electron. J. Differ. Equ. 66, 1–17 (2002) El Baraka, A.: Function spaces of BMO and Campanato type. In: Proceedings of the 2002 Fez Conference on Partial Differential Equations, pp. 109-115 (electronic), Electronic Journal of Differential Equations Conference 9, Southwest Texas State University, San Marcos, TX (2002) El Baraka, A.: Littlewood–Paley characterization for Campanato spaces. J. Funct. Spaces Appl. 4, 193–220 (2006) Fabian, M., Zizler, V.: A “nonlinear” proof of Pitt’s compactness theorem. Proc. AMS 131, 3693–3694 (2003) Gunawan, H., Kikianty, E., Schwanke, C.: Discrete Morrey spaces and their inclusion properties. Math. Nachr. 291(8–9), 1283–1296 (2018) Gunawan, H., Schwanke, C.: The Hardy–Littlewood maximal operator on discrete Morrey spaces. Mediterr. J. Math. (2019). https://doi.org/10.1007/s00009-018-1277-7 Haroske, D.D., Skrzypczak, L.: Continuous embeddings of Besov–Morrey function spaces. Acta Math. Sin. (Engl. Ser.) 28, 1307–1328 (2012) Heil, C.: The Basis Theory Primer. Birkhäuser, Basel (2011) Kalita, E.A.: Dual Morrey spaces. Dokl. Akad. Nauk 361(4), 447–449 (1998) König, H.: Eigenvalue Distribution of Compact Operators. Birkhäuser, Basel (1986) Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data. Commun. Partial Differ. Equ. 19, 959–1014 (1994) Kühn, T.: A lower estimate for entropy numbers. J. Approx. Theory 110, 120–124 (2001) Kühn, T.: Entropy numbers in sequence spaces with an application to weighted function spaces. J. Approx. Theory 153, 40–52 (2008) Lemarié-Rieusset, P.G.: The Navier–Stokes equations in the critical Morrey–Campanato space. Rev. Mat. Iberoam. 23, 897–930 (2007) Lemarié-Rieusset, P.G.: The role of Morrey spaces in the study of Navier–Stokes and Euler equations. Eurasian Math. J. 3, 62–93 (2012) Lemarié-Rieusset, P.G.: Multipliers and Morrey spaces. Potential Anal. 38, 741–752 (2013) López Molina, J.A.: Pitt’s theorem for operators between general Lorentz sequence spaces. Math. Scan. 90, 101–125 (2002) Mastyło, M., Sawano, Y., Tanaka, H.: Morrey type spaces and its Köthe dual space. Bull. Malays. Math. Sci. Soc. 41, 1181–1198 (2018) Mazzucato, A.: Decomposition of Besov–Morrey spaces. Contemp. Math. 320, 279–294 (2003) Mazzucato, A.: Besov–Morrey spaces: function spaces theory and applications to non-linear PDE. Trans. Am. Math. Soc. 355, 1297–1369 (2003) Morrey, C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43, 126–166 (1938) Olsen, P.: Fractional integration, Morrey spaces and Schrödinger equation. Commun. Partial Differ. Equ. 20, 20005–2055 (1995) Piccinini, L.C.: Inclusioni tra spazi di Morrey. Boll. Un. Mat. Ital (4) 2, 95–99 (1969) Piccinini, L.C.: Proprietá di inclusione e interpolazione tra spazi di Morrey e loro generalizzazioni. Ph.D. thesis, Scuola Normale Superiore Pisa (1969) Pietsch, A.: Eigenvalues and \(s\)-Numbers. Akad. Verlagsgesellschaft Geest & Portig, Leipzig (1987) Pitt, H.R.: A note on bilinear forms. J. Lond. Math. Soc. 11(1), 174–180 (1932) Rosenthal, M.: Morrey-Räume aus der Sicht der harmonischen Analysis. Master’s thesis, Friedrich-Schiller-Universität Jena, Germany (2009) Rosenthal, M.: Local means, wavelet bases, representations, and isomorphisms in Besov–Morrey and Triebel–Lizorkin–Morrey spaces. Math. Nachr. 286, 59–87 (2013) Rosenthal, M., Triebel, H.: Morrey spaces, their duals and preduals. Rev. Mat. Complut. 28(1), 1–30 (2015) Sawano, Y.: Wavelet characterizations of Besov–Morrey and Triebel–Lizorkin–Morrey spaces. Funct. Approx. Comment. Math. 38, 93–107 (2008) Sawano, Y.: A note on Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces. Acta Math. Sin. (Engl. Ser.) 25, 1223–1242 (2009) Sawano, Y., Tanaka, H.: Decompositions of Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces. Math. Z. 257, 871–905 (2007) Sawano, Y., Tanaka, H.: Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces for non-doubling measures. Math. Nachr. 282, 1788–1810 (2009) Schütt, C.: Entropy numbers of diagonal operators between symmetric Banach spaces. J. Approx. Theory 40, 121–128 (1984) Sickel, W.: Smoothness spaces related to Morrey spaces—a survey. I. Eurasian Math. J. 3, 110–149 (2012) Sickel, W.: Smoothness spaces related to Morrey spaces—a survey. II. Eurasian Math. J. 4, 82–124 (2013) Sickel, W., Yang, D.C., Yuan, W.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Springer, Berlin (2010) Tang, L., Xu, J.: Some properties of Morrey type Besov–Triebel spaces. Math. Nachr. 278, 904–917 (2005) Taylor, M.: Analysis on Morrey spaces and applications to Navier–Stokes and other evolution equations. Commun. Partial Differ. Equ. 17, 1407–1456 (1992) Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978) Triebel, H.: Fractals and Spectra. Birkhäuser, Basel (1997) Triebel, H.: Local Function Spaces, Heat and Navier–Stokes Equations. EMS Tracts in Mathematics 20. European Mathematical Society (EMS), Zürich (2013) Triebel, H.: Hybrid Function Spaces, Heat and Navier–Stokes Equations. EMS Tracts in Mathematics 24. European Mathematical Society (EMS), Zürich (2015) Yang, D., Yuan, W.: A new class of function spaces connecting Triebel–Lizorkin spaces and Q spaces. J. Funct. Anal. 255, 2760–2809 (2008) Yang, D., Yuan, W.: New Besov-type spaces and Triebel–Lizorkin-type spaces including Q spaces. Math. Z. 265, 451–480 (2010) Yuan, W., Sickel, W., Yang, D.: On the coincidence of certain approaches to smoothness spaces related to Morrey spaces. Math. Nachr. 286, 1571–1584 (2013) Zorko, C.T.: Morrey space. Proc. Am. Math. Soc. 98(4), 586–592 (1986)