Morphology evolution of ultra-stable and low-cost all-inorganic lead-free perovskite solar cells

Materials Today Energy - Tập 32 - Trang 101241 - 2023
Jia Liang1,2, Khushboo Soni3, Jun Lou3,4
1Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA
2Department of Materials Science, Fudan University, 220 Handan Road, Shanghai 200433, China
3Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
4Department of Chemistry, Rice University; Houston, TX 77005, USA

Tài liệu tham khảo

Swarnkar, 2016, Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics, Science, 354, 92, 10.1126/science.aag2700 Wang, 2021, Size mismatch induces cation segregation in CsPbI3: forming energy level gradient and 3D/2D heterojunction promotes the efficiency of carbon-based perovskite solar cells to over 15, Nano Energy, 89, 10.1016/j.nanoen.2021.106411 Sanehira, 2017, Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells, Sci. Adv., 3, aao4204, 10.1126/sciadv.aao4204 Liang, 2017, All-inorganic halide perovskites for optoelectronics: progress and prospects, Solar RRL, 1 Liang, 2017, CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability, J. Am. Chem. Soc., 139, 14009, 10.1021/jacs.7b07949 Liang, 2016, All-inorganic perovskite solar cells, J. Am. Chem. Soc., 138, 15829, 10.1021/jacs.6b10227 Wang, 2019, Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies > 18, Science, 365, 591, 10.1126/science.aav8680 Tan, 2022, Temperature-reliable low-dimensional perovskites passivated black-phase CsPbI3 toward stable and efficient photovoltaics, Angew. Chem. Int. Ed., 61, 10.1002/anie.202201300 Jiang, 2019, Negligible-Pb-Waste and upscalable perovskite deposition technology for high-operational-stability perovskite solar modules, Adv. Energy Mater., 9, 10.1002/aenm.201803047 Jiang, 2019, Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation, Nat. Energy, 4, 585, 10.1038/s41560-019-0406-2 Li, 2021, On-device lead-absorbing tapes for sustainable perovskite solar cells, Nat. Sustain., 4, 1038, 10.1038/s41893-021-00789-1 Zhang, 2021, Molten-Salt-Assisted CsPbI3 perovskite crystallization for nearly 20%-efficiency solar cells, Adv. Mater., 33, 10.1002/adma.202103770 Chang, 2020, Printable CsPbI3 perovskite solar cells with PCE of 19% via an additive strategy, Adv. Mater., 32, 10.1002/adma.202001243 Sun, 2022, Highly efficient CsPbI3/Cs1-xDMAxPbI3 bulk heterojunction perovskite solar cell, Joule, 6, 850, 10.1016/j.joule.2022.02.004 Wang, 2017, Stabilizing the alpha-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films, Joule, 1, 371, 10.1016/j.joule.2017.07.017 Chen, 2021, Design of low bandgap CsPb1−xSnxI2Br perovskite solar cells with excellent phase stability, Small, 17, 10.1002/smll.202101380 USA Environmental Protection Agency Lead Laws and Regulations. http://www2.epa.gov/lead/lead-laws-and-regulations, Accessed 4 June 2022. Liang, 2020, Perovskite-Derivative valleytronics, Adv. Mater., 32, 10.1002/adma.202004111 Han, 2019, Lead-free double perovskite Cs2SnX6: facile solution synthesis and excellent stability, Small, 15 Liu, 2020, Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure, Nat. Commun., 11, 2678, 10.1038/s41467-020-16561-6 Lei, 2021, Lead-free double perovskite Cs2AgBiBr6: fundamentals, applications, and perspectives, Adv. Funct. Mater., 31, 10.1002/adfm.202105898 Kumar, 2021, Two-step deposition approach for lead free (NH4)3Sb2I9 perovskite solar cells with enhanced open circuit voltage and performance, Chemelectrochem, 8, 3150, 10.1002/celc.202100957 Geng, 2020, Bandgap engineering in two-dimensional halide perovskite Cs3Sb2I9 nanocrystals under pressure, Nanoscale, 12, 1425, 10.1039/C9NR09533K Saparov, 2015, Thin-film preparation and characterization of Cs3Sb2I9: a lead-free layered perovskite semiconductor, Chem. Mater., 27, 5622, 10.1021/acs.chemmater.5b01989 Pal, 2017, Colloidal synthesis and photophysics of M3Sb2I9 (M=Cs and Rb) nanocrystals: lead-free perovskites, Angew. Chem. Int. Ed., 56, 14187, 10.1002/anie.201709040 Boopathi, 2017, Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites, J. Mater. Chem., 5, 20843, 10.1039/C7TA06679A Singh, 2018, Photovoltaic performance of vapor-assisted solution-processed layer polymorph of Cs3Sb2I9, ACS Appl. Mater. Interfaces, 10, 2566, 10.1021/acsami.7b16349 Correa-Baena, 2018, A-site cation in inorganic A3Sb2I9 perovskite influences structural dimensionality, exciton binding energy, and solar cell performance, Chem. Mater., 30, 3734, 10.1021/acs.chemmater.8b00676 Harikesh, 2016, Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics, Chem. Mater., 28, 7496, 10.1021/acs.chemmater.6b03310 Li, 2020, Microstructural and photoconversion efficiency enhancement of compact films of lead-free perovskite derivative Rb3Sb2I9, J. Mater. Chem., 8, 4396, 10.1039/C9TA13352F Jia, 2019, A low-temperature solution-processed copper antimony iodide rudorffite for solar cells, Sci. China Mater., 62, 54, 10.1007/s40843-018-9300-6 Ahmad, 2020, Recent progress and challenges in A3Sb2X9-based perovksite solar cells, ACS Omega, 5, 28404, 10.1021/acsomega.0c04174 Bi, 2017, Morphology engineering: a route to highly reproducible and high efficiency perovskite solar cells, ChemSusChem, 10, 1624, 10.1002/cssc.201601387 Liang, 2018, Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by Mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes, Adv. Energy Mater., 8, 10.1002/aenm.201800504 Tailor, 2020, Recent progress in morphology optimization in perovskite solar cell, J. Mater. Chem., 8, 21356, 10.1039/D0TA00143K Jeon, 2014, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater., 13, 897, 10.1038/nmat4014 Kim, 2021, How antisolvent miscibility affects perovskite film wrinkling and photovoltaic properties, Nat. Commun., 12, 1554, 10.1038/s41467-021-21803-2 Taylor, 2021, A general approach to high-efficiency perovskite solar cells by any antisolvent, Nat. Commun., 12, 1878, 10.1038/s41467-021-22049-8 Pool, 2017, Thermal engineering of FAPbI3 perovskite material via radiative thermal annealing and in situ XRD, Nat. Commun., 8, 10.1038/ncomms14075 Zhu, 2021, Unveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodes, Nat. Commun., 12, 5081, 10.1038/s41467-021-25407-8 Wang, 2018, Synergistic improvement of perovskite film quality for efficient solar cells via multiple chloride salt additives, Sci. Bull., 63, 726, 10.1016/j.scib.2018.05.003 Shi, 2015, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals, Science, 347, 519, 10.1126/science.aaa2725