Morphology dependant electrochemical performance of hydrothermally synthesized NiCo2O4 nanomorphs
Tài liệu tham khảo
Sun, 2016, Fabrication of hollow NiCo2O4 nanoparticle/graphene composite for supercapacitor electrode, Mater. Lett., 182, 23, 10.1016/j.matlet.2016.06.063
She, 2018, Mixed nickel-cobalt-molybdenum metal oxide nanosheet arrays for hybrid supercapacitor applications, Coatings, 8, 340, 10.3390/coatings8100340
Rahimi, 2018, Ternary nickel cobalt iron sulfides ultrathin nanosheets grown on 3-D nickel nanocone arrays-nickel plate current collector as a binder free electrode for fabrication of highly performance supercapacitors, J. Electroanal. Chem., 810, 78, 10.1016/j.jelechem.2018.01.004
Sun, 2018, Nickel precursor-free synthesis of nickel cobalt-based ternary metal oxides for asymmetric supercapacitors, Electrochim. Acta, 10.1016/j.electacta.2018.06.017
Yao, 2018, A novel two-dimensional coordination polymer-polypyrrole hybrid material as a high-performance electrode for flexible supercapacitor, Chem. Eng. J., 334, 2547, 10.1016/j.cej.2017.12.013
Ponkratov, 2018, Synthesis of novel families of conductive cationic poly (ionic liquid) s and their application in all-polymer flexible pseudo-supercapacitors, Electrochim. Acta, 10.1016/j.electacta.2018.05.191
Jin, 2018, A high-performance ionic liquid based gel polymer electrolyte incorporating anion-trapping boron sites for all-solid-state supercapacitors application, ACS Appl. Mater. Interfaces, 10.1021/acsami.8b00083
Singh, 2018, Electrochemical exfoliation of graphite into graphene for flexible supercapacitor application, Mater. Today:. Proc., 5, 1125, 10.1016/j.matpr.2017.11.192
Strauss, 2018, A simple route to porous graphene from carbon nanodots for supercapacitor applications, Adv. Mater., 30, 1704449, 10.1002/adma.201704449
Suraj, 2018, Self discharge and voltage recovery in graphene supercapacitors, IEEE Trans. Power Electron.
Nagar, 2018, Design and fabrication of printed paper-based hybrid micro-supercapacitor by using graphene and redox-active electrolyte, ChemSusChem, 10.1002/cssc.201800426
Moussa, 2018, Compact, flexible conducting polymer/graphene nanocomposites for supercapacitors of high volumetric energy density, Compos. Sci. Technol., 160, 50, 10.1016/j.compscitech.2018.02.033
Asen, 2018, Ternary nanostructures of Cr2O3/graphene oxide/conducting polymers for supercapacitor application, J. Electroanal. Chem., 823, 505, 10.1016/j.jelechem.2018.06.048
Woodward, 2018, Carbon foams from emulsion-templated reduced graphene oxide polymer composites: electrodes for supercapacitor devices, J. Mater. Chem. A, 6, 1840, 10.1039/C7TA09893F
Ahuja, 2015, Solid-state, high-performance supercapacitor using graphene nanoribbons embedded with zinc manganite, J. Mater. Chem. A, 3, 4931, 10.1039/C4TA05865H
Kumbhar, 2012, Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application, Appl. Surf. Sci., 259, 39, 10.1016/j.apsusc.2012.06.034
Umeshbabu, 2016, NiCo2O4 hexagonal nanoplates anchored on reduced graphene oxide sheets with enhanced electrocatalytic activity and stability for methanol and water oxidation, Electrochim. Acta, 213, 717, 10.1016/j.electacta.2016.07.161
Tamboli, 2017, Mimics of microstructures of Ni substituted Mn1- xNixCo2O4 for high energy density asymmetric capacitors, Chem. Eng. J., 307, 300, 10.1016/j.cej.2016.08.086
Sanchez, 2018, Porous NiCoMn ternary metal oxide/graphene nanocomposites for high performance hybrid energy storage devices, Electrochim. Acta, 279, 44, 10.1016/j.electacta.2018.05.072
Yao, 2016, In situ removal of template to synthesize mesoporous NiCo2O4 for high performance battery-type electrode, J. Electroanal. Chem., 782, 133, 10.1016/j.jelechem.2016.10.038
Chen, 1999, Nickel hydroxide as an active material for the positive electrode in rechargeable alkaline batteries, J. Electrochem. Soc., 146, 3606, 10.1149/1.1392522
Zhang, 2014, Hierarchical mesoporous nickel cobaltite nanoneedle/carbon cloth arrays as superior flexible electrodes for supercapacitors, Nanoscale Res. Lett., 9, 139, 10.1186/1556-276X-9-139
Marco, 2001, Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo2O4, J. Mater. Chem., 11, 3087, 10.1039/b103135j
Padmanathan, 2014, Mesoporous MnCo2O4 spinel oxide nanostructure synthesized by solvothermal technique for supercapacitor, Ionics, 20, 479, 10.1007/s11581-013-1009-8
He, 2013, Reduced graphene oxide-CoFe2O4 composites for supercapacitor electrode, Russ. J. Electrochem., 49, 359, 10.1134/S1023193513040101
Yu, 2013, Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes, Chem. Commun., 49, 137, 10.1039/C2CC37117K
Liu, 2013, New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors, ACS Appl. Mater. Interfaces, 5, 10011, 10.1021/am402339d
Ko, 2016, Core/shell-like NiCo2O4-decorated MWCNT hybrids prepared by a dry synthesis technique and its supercapacitor applications, Mater. Lett., 166, 105, 10.1016/j.matlet.2015.12.053
Uke, 2019, PEG assisted hydrothermal fabrication of undoped and Cr doped NiCo2O4 nanorods and their electrochemical performance for supercapacitor application, Adv. Sci., Eng. Med., 11, 357, 10.1166/asem.2019.2367
Shaikh, 2017, Nanowires of Ni substituted MnCo2O4 as an anode material for high performance lithium-ion battery, ChemistrySelect., 2, 4630, 10.1002/slct.201700267
Shetti, 2019, ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications, Biosens. Bioelectron., 111417
Kumar, 2019, Electrochemical sensors and biosensors based on graphene functionalized with metal oxide nanostructures for, Healthcare Appl., ChemistrySelect, 4, 5322, 10.1002/slct.201803871
Bukkitgar, 2019, Electro-catalytic behavior of Mg-doped ZnO nano-flakes for oxidation of anti-inflammatory drug, J. Electrochem. Soc., 166, B3072, 10.1149/2.0131909jes
Shikandar, 2018, Silver-Doped Titania Modified Carbon Electrode for Electrochemical Studies of Furantril, ECS J. Solid State Sci. Technol., 7, Q3215, 10.1149/2.0321807jss
Bukkitgar, 2018, Construction of nanoparticles composite sensor for atorvastatin and its determination in pharmaceutical and urine samples, Sens. Actuators, B, 255, 1462, 10.1016/j.snb.2017.08.150
Uke, 2017, Recent advancements in the cobalt oxides manganese oxides, and their composite as an electrode material for supercapacitor: a review, Front. Mater., 4, 21, 10.3389/fmats.2017.00021
Rao, 2019, Photocatalytic recovery of H2 from H2S containing wastewater: Surface and interface control of photo-excitons in Cu2S@ TiO2 core-shell nanostructures, Appl. Catal. B, 254, 174, 10.1016/j.apcatb.2019.04.090
Reddy, 2019, Template-free synthesis of tetragonal Co-doped ZrO2 nanoparticles for applications in electrochemical energy storage and water treatment, Electrochim. Acta, 10.1016/j.electacta.2019.06.010
Reddy, 2019, A review on frontiers in plasmonic nano-photocatalysts for hydrogen production, Int. J. Hydrogen Energy, 44, 10453, 10.1016/j.ijhydene.2019.02.120
Mishra, 2019, Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review, Carbon, 10.1016/j.carbon.2019.04.104
Basavarajappa, 2018, Enhanced photocatalytic activity and biosensing of gadolinium substituted BiFeO3 nanoparticles, ChemistrySelect, 3, 9025, 10.1002/slct.201801198
Haque, 2018, Nanoarchitectured graphene-organic frameworks (GOFs): synthetic strategies, properties, and applications, chemistry, Asian J., 13, 3561, 10.1002/asia.201800984
Adhyapak, 2014, Controlled synthesis of zinc oxide nanoflowers by succinate-assisted hydrothermal route and their morphology-dependent photocatalytic performance, Mater. Sci. Semicond. Process., 27, 197, 10.1016/j.mssp.2014.06.040
Qi, 2017, NiCo2O4 hollow microspheres with tunable numbers and thickness of shell for supercapacitors, Chem. Eng. J., 309, 426, 10.1016/j.cej.2016.10.060
Zhang, 2014, General synthesis of multi-shelled mixed metal oxide hollow spheres with superior lithium storage properties, Angew. Chem., 126, 9187, 10.1002/ange.201404604
Byrappa, 2007, Hydrothermal technology for nanotechnology, Prog. Cryst. Growth Charact. Mater., 53, 117, 10.1016/j.pcrysgrow.2007.04.001
Yedluri, 2019, Enhanced electrochemical performance of nanoplate nickel cobaltite (NiCo 2 O 4) supercapacitor applications, RSC Adv., 9, 1115, 10.1039/C8RA09081E
Dubal, 2012, Galvanostatically deposited Fe: MnO2 electrodes for supercapacitor application, J. Phys. Chem. Solids, 73, 18, 10.1016/j.jpcs.2011.09.005
Ezeigwe, 2017, Solvothermal synthesis of NiCo2O4 nanocomposites on liquid-phase exfoliated graphene as an electrode material for electrochemical capacitors, J. Alloy. Compd., 693, 1133, 10.1016/j.jallcom.2016.09.244
Zhu, 2017, Identifying the conversion mechanism of NiCo2O4 during sodiation-desodiation cycling by in situ TEM, Adv. Funct. Mater., 27, 1606163, 10.1002/adfm.201606163
Deokate, 2017, Simple synthesis of NiCo2O4 thin films using spray pyrolysis for electrochemical supercapacitor application: a novel approach, Electrochim. Acta, 224, 378, 10.1016/j.electacta.2016.12.034
Liu, 2012, A sol-gel process for the synthesis of NiCo2O4 having improved specific capacitance and cycle stability for electrochemical capacitors, J. Electrochem. Soc., 159, A1262, 10.1149/2.057208jes
Shinde, 2017, Chemical synthesis of flower-like hybrid Cu (OH)2/CuO electrode: Application of polyvinyl alcohol and triton X-100 to enhance supercapacitor performance, Colloids Surf., B, 156, 165, 10.1016/j.colsurfb.2017.05.018
Shinde, 2018, Morphological enhancement to CuO nanostructures by electron beam irradiation for biocompatibility and electrochemical performance, Ultrason. Sonochem., 40, 314, 10.1016/j.ultsonch.2017.07.014
Zou, 2016, Dandelion-like NiCo2O4 hollow microspheres as enhanced cathode catalyst for Li-oxygen batteries in ambient air, Electrochim. Acta, 216, 120, 10.1016/j.electacta.2016.08.151
Adhyapak, 2013, Effect of preparation parameters on the morphologically induced photocatalytic activities of hierarchical zinc oxide nanostructures, Ceram. Int., 39, 7367, 10.1016/j.ceramint.2013.02.076
Meshram, 2012, Facile synthesis of CuO nanomorphs and their morphology dependent sunlight driven photocatalytic properties, Chem. Eng. J., 204, 158, 10.1016/j.cej.2012.07.012
Ding, 2016, Preparing Co3O4 urchin-like hollow microspheres self-supporting architecture for improved glucose biosensing performance, Sens. Actuators, B, 235, 162, 10.1016/j.snb.2016.05.068
Shen, 2014, Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage, Adv. Funct. Mater., 24, 2630, 10.1002/adfm.201303138
Song, 2018, Facile preparation of urchin-like NiCo2O4 microspheres as oxidase mimetic for colormetric assay of hydroquinone, Sens. Actuators, B, 255, 1927, 10.1016/j.snb.2017.08.204
Shinde, 2014, Nanoflower-like CuO/Cu (OH) 2 hybrid thin films: Synthesis and electrochemical supercapacitive properties, J. Electroanal. Chem., 732, 80, 10.1016/j.jelechem.2014.09.004
Shinde, 2015, Hierarchical 3D-flower-like CuO nanostructure on copper foil for supercapacitors, RSC Adv., 5, 4443, 10.1039/C4RA11164H
Wang, 2008, Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor, J. Power Sources, 185, 1563, 10.1016/j.jpowsour.2008.08.032
Madhu, 2015, Honeycomb-like porous carbon-cobalt oxide nanocomposite for high-performance enzymeless glucose sensor and supercapacitor applications, ACS Appl. Mater. Interfaces, 7, 15812, 10.1021/acsami.5b04132
Liu, 2016, A flexible, transparent and super-long-life supercapacitor based on ultrafine Co 3 O 4 nanocrystal electrodes, Nanoscale, 8, 4227, 10.1039/C5NR09145D
Yeager, 2012, Pseudocapacitive NiO fine nanoparticles for supercapacitor reactions, J. Electrochem. Soc., 159, A1598, 10.1149/2.025210jes
Pande, 2018, Facile chemical route for multiwalled carbon nanotube/mercury sulfide nanocomposite: High performance supercapacitive electrode, J. Colloid Interface Sci., 514, 740, 10.1016/j.jcis.2017.12.068
Waghmode, 2019, Morphology-controlled synthesis of NiCo2O4 nanoflowers on stainless steel substrates as high-performance supercapacitors, Mater. Sci. Energy Technol., 2, 556
Reddy, 2019, Mn-doped ZrO2 nanoparticles prepared by a template-free method for electrochemical energy storage and abatement of dye degradation, Ceram. Int., 45, 15298, 10.1016/j.ceramint.2019.05.020
Cakici, 2017, Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes, Chem. Eng. J., 309, 151, 10.1016/j.cej.2016.10.012
Hassan, 2014, Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance, Nanoscale, 6, 11988, 10.1039/C4NR02365J
Hassan, 2014, Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode, Compos. Sci. Technol., 98, 1, 10.1016/j.compscitech.2014.04.007
Uke, 2018, Triethanol Amine Ethoxylate (TEA-EO) driven controlled synthesis of NiCo2O4 nanostructures. Their characterization and supercapacitor performance, Adv. Sci. Eng. Med., 10, 1174, 10.1166/asem.2018.2290
Pu, 2013, Porous hexagonal NiCo2O4 nanoplates as electrode materials for supercapacitors, Electrochim. Acta, 106, 226, 10.1016/j.electacta.2013.05.092
Hu, 2013, Microwave-assisted hydrothermal annealing of binary Ni-Co oxy-hydroxides for asymmetric supercapacitors, J. Power Sources, 238, 180, 10.1016/j.jpowsour.2013.03.019
Ding, 2012, Scalable electrodeposition of cost-effective microsized NiCo2O4 electrode materials for practical applications in electrochemical capacitors, ECS Electrochem. Lett., 1, A43, 10.1149/2.001203eel
Wu, 2011, Sol-gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors, Electrochim. Acta, 56, 7517, 10.1016/j.electacta.2011.06.101
Chen, 2010, Inkjet printing of single-walled carbon nanotube/RuO 2 nanowire supercapacitors on cloth fabrics and flexible substrates, Nano Res., 3, 594, 10.1007/s12274-010-0020-x
Gund, 2013, One step hydrothermal synthesis of micro-belts like β-Ni (OH) 2 thin films for supercapacitors, Ceram. Int., 39, 7255, 10.1016/j.ceramint.2013.01.091
Freger, 2005, Diffusion impedance and equivalent circuit of a multilayer film, Electrochem. Commun., 7, 957, 10.1016/j.elecom.2005.06.020
